| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cygctb.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 𝐵 ≠ ∅ ) |
| 4 |
|
6re |
⊢ 6 ∈ ℝ |
| 5 |
|
rexr |
⊢ ( 6 ∈ ℝ → 6 ∈ ℝ* ) |
| 6 |
|
pnfnlt |
⊢ ( 6 ∈ ℝ* → ¬ +∞ < 6 ) |
| 7 |
4 5 6
|
mp2b |
⊢ ¬ +∞ < 6 |
| 8 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ V ) |
| 10 |
|
hashinf |
⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 11 |
9 10
|
sylan |
⊢ ( ( 𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 12 |
11
|
breq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) < 6 ↔ +∞ < 6 ) ) |
| 13 |
12
|
biimpd |
⊢ ( ( 𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) < 6 → +∞ < 6 ) ) |
| 14 |
13
|
impancom |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ¬ 𝐵 ∈ Fin → +∞ < 6 ) ) |
| 15 |
7 14
|
mt3i |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 𝐵 ∈ Fin ) |
| 16 |
|
hashnncl |
⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
| 18 |
3 17
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 19 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 20 |
18 19
|
eleqtrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 21 |
|
6nn |
⊢ 6 ∈ ℕ |
| 22 |
21
|
nnzi |
⊢ 6 ∈ ℤ |
| 23 |
22
|
a1i |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 6 ∈ ℤ ) |
| 24 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) < 6 ) |
| 25 |
|
elfzo2 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 6 ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) < 6 ) ) |
| 26 |
20 23 24 25
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ) |
| 27 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
| 28 |
27
|
oveq2i |
⊢ ( 1 ..^ 6 ) = ( 1 ..^ ( 5 + 1 ) ) |
| 29 |
28
|
eleq2i |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 5 + 1 ) ) ) |
| 30 |
|
5nn |
⊢ 5 ∈ ℕ |
| 31 |
30 19
|
eleqtri |
⊢ 5 ∈ ( ℤ≥ ‘ 1 ) |
| 32 |
|
fzosplitsni |
⊢ ( 5 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 5 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) ) ) |
| 33 |
31 32
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 5 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) ) |
| 34 |
29 33
|
bitri |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) ) |
| 35 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
| 36 |
35
|
oveq2i |
⊢ ( 1 ..^ 5 ) = ( 1 ..^ ( 4 + 1 ) ) |
| 37 |
36
|
eleq2i |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 4 + 1 ) ) ) |
| 38 |
|
4nn |
⊢ 4 ∈ ℕ |
| 39 |
38 19
|
eleqtri |
⊢ 4 ∈ ( ℤ≥ ‘ 1 ) |
| 40 |
|
fzosplitsni |
⊢ ( 4 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 4 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) ) ) |
| 41 |
39 40
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 4 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) ) |
| 42 |
37 41
|
bitri |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) ) |
| 43 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
| 44 |
43
|
oveq2i |
⊢ ( 1 ..^ 4 ) = ( 1 ..^ ( 3 + 1 ) ) |
| 45 |
44
|
eleq2i |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 3 + 1 ) ) ) |
| 46 |
|
3nn |
⊢ 3 ∈ ℕ |
| 47 |
46 19
|
eleqtri |
⊢ 3 ∈ ( ℤ≥ ‘ 1 ) |
| 48 |
|
fzosplitsni |
⊢ ( 3 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 3 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) ) ) |
| 49 |
47 48
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 3 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) ) |
| 50 |
45 49
|
bitri |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) ) |
| 51 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 52 |
51
|
oveq2i |
⊢ ( 1 ..^ 3 ) = ( 1 ..^ ( 2 + 1 ) ) |
| 53 |
52
|
eleq2i |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 2 + 1 ) ) ) |
| 54 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
| 55 |
|
fzosplitsni |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 2 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) ) ) |
| 56 |
54 55
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 2 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) ) |
| 57 |
53 56
|
bitri |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) ) |
| 58 |
|
elsni |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ { 1 } → ( ♯ ‘ 𝐵 ) = 1 ) |
| 59 |
|
fzo12sn |
⊢ ( 1 ..^ 2 ) = { 1 } |
| 60 |
58 59
|
eleq2s |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 62 |
|
hash1 |
⊢ ( ♯ ‘ 1o ) = 1 |
| 63 |
61 62
|
eqtr4di |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 1o ) ) |
| 64 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 65 |
61 64
|
eqeltrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 66 |
|
hashclb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) |
| 67 |
8 66
|
ax-mp |
⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 68 |
65 67
|
sylibr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → 𝐵 ∈ Fin ) |
| 69 |
|
1onn |
⊢ 1o ∈ ω |
| 70 |
|
nnfi |
⊢ ( 1o ∈ ω → 1o ∈ Fin ) |
| 71 |
69 70
|
ax-mp |
⊢ 1o ∈ Fin |
| 72 |
|
hashen |
⊢ ( ( 𝐵 ∈ Fin ∧ 1o ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 1o ) ↔ 𝐵 ≈ 1o ) ) |
| 73 |
68 71 72
|
sylancl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 1o ) ↔ 𝐵 ≈ 1o ) ) |
| 74 |
63 73
|
mpbid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → 𝐵 ≈ 1o ) |
| 75 |
1
|
0cyg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐺 ∈ CycGrp ) |
| 76 |
|
cygabl |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Abel ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐺 ∈ Abel ) |
| 78 |
74 77
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → 𝐺 ∈ Abel ) |
| 79 |
78
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) → 𝐺 ∈ Abel ) ) |
| 80 |
|
id |
⊢ ( ( ♯ ‘ 𝐵 ) = 2 → ( ♯ ‘ 𝐵 ) = 2 ) |
| 81 |
|
2prm |
⊢ 2 ∈ ℙ |
| 82 |
80 81
|
eqeltrdi |
⊢ ( ( ♯ ‘ 𝐵 ) = 2 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
| 83 |
1
|
prmcyg |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ CycGrp ) |
| 84 |
83 76
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ Abel ) |
| 85 |
84
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ℙ → 𝐺 ∈ Abel ) ) |
| 86 |
82 85
|
syl5 |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 2 → 𝐺 ∈ Abel ) ) |
| 87 |
79 86
|
jaod |
⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) → 𝐺 ∈ Abel ) ) |
| 88 |
57 87
|
biimtrid |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) → 𝐺 ∈ Abel ) ) |
| 89 |
|
id |
⊢ ( ( ♯ ‘ 𝐵 ) = 3 → ( ♯ ‘ 𝐵 ) = 3 ) |
| 90 |
|
3prm |
⊢ 3 ∈ ℙ |
| 91 |
89 90
|
eqeltrdi |
⊢ ( ( ♯ ‘ 𝐵 ) = 3 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
| 92 |
91 85
|
syl5 |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 3 → 𝐺 ∈ Abel ) ) |
| 93 |
88 92
|
jaod |
⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) → 𝐺 ∈ Abel ) ) |
| 94 |
50 93
|
biimtrid |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) → 𝐺 ∈ Abel ) ) |
| 95 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐺 ∈ Grp ) |
| 96 |
|
2z |
⊢ 2 ∈ ℤ |
| 97 |
|
eqid |
⊢ ( gEx ‘ 𝐺 ) = ( gEx ‘ 𝐺 ) |
| 98 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
| 99 |
1 97 98
|
gexdvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 2 ∈ ℤ ) → ( ( gEx ‘ 𝐺 ) ∥ 2 ↔ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 100 |
95 96 99
|
sylancl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ( gEx ‘ 𝐺 ) ∥ 2 ↔ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 101 |
1 97
|
gex2abl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( gEx ‘ 𝐺 ) ∥ 2 ) → 𝐺 ∈ Abel ) |
| 102 |
101
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( gEx ‘ 𝐺 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 103 |
102
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ( gEx ‘ 𝐺 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 104 |
100 103
|
sylbird |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 105 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ↔ ¬ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) |
| 106 |
95
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐺 ∈ Grp ) |
| 107 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝑥 ∈ 𝐵 ) |
| 108 |
1 98
|
odcl |
⊢ ( 𝑥 ∈ 𝐵 → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 109 |
108
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 110 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 111 |
110
|
a1i |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 4 ∈ ℕ0 ) |
| 112 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ♯ ‘ 𝐵 ) = 4 ) |
| 113 |
112 110
|
eqeltrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 114 |
113 67
|
sylibr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐵 ∈ Fin ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐵 ∈ Fin ) |
| 116 |
1 98
|
oddvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 117 |
106 115 107 116
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 118 |
112
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ♯ ‘ 𝐵 ) = 4 ) |
| 119 |
117 118
|
breqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ) |
| 120 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 121 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 122 |
96
|
a1i |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 2 ∈ ℤ ) |
| 123 |
1 98
|
odcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 124 |
106 115 107 123
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 125 |
|
pccl |
⊢ ( ( 2 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) |
| 126 |
81 124 125
|
sylancr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) |
| 127 |
126
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℤ ) |
| 128 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 129 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) |
| 130 |
|
dvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ∧ 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ) |
| 131 |
130
|
3expia |
⊢ ( ( 2 ∈ ℤ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ) ) |
| 132 |
96 126 131
|
sylancr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ) ) |
| 133 |
|
1z |
⊢ 1 ∈ ℤ |
| 134 |
|
eluz |
⊢ ( ( ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 135 |
127 133 134
|
sylancl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 136 |
|
oveq2 |
⊢ ( 𝑛 = 2 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 2 ) ) |
| 137 |
136 120
|
eqtrdi |
⊢ ( 𝑛 = 2 → ( 2 ↑ 𝑛 ) = 4 ) |
| 138 |
137
|
breq2d |
⊢ ( 𝑛 = 2 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ) ) |
| 139 |
138
|
rspcev |
⊢ ( ( 2 ∈ ℕ0 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ) |
| 140 |
121 119 139
|
sylancr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ) |
| 141 |
|
pcprmpw2 |
⊢ ( ( 2 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
| 142 |
81 124 141
|
sylancr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
| 143 |
140 142
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 144 |
143
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 145 |
|
2cn |
⊢ 2 ∈ ℂ |
| 146 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
| 147 |
145 146
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
| 148 |
147
|
a1i |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 ↑ 1 ) = 2 ) |
| 149 |
144 148
|
breq12d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 150 |
132 135 149
|
3imtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 151 |
129 150
|
mtod |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ¬ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) |
| 152 |
|
1re |
⊢ 1 ∈ ℝ |
| 153 |
126
|
nn0red |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 154 |
|
ltnle |
⊢ ( ( 1 ∈ ℝ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ¬ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 155 |
152 153 154
|
sylancr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ¬ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 156 |
151 155
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 157 |
|
nn0ltp1le |
⊢ ( ( 1 ∈ ℕ0 ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ( 1 + 1 ) ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 158 |
64 126 157
|
sylancr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ( 1 + 1 ) ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 159 |
156 158
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 + 1 ) ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 160 |
128 159
|
eqbrtrid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 2 ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 161 |
|
eluz2 |
⊢ ( ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℤ ∧ 2 ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 162 |
122 127 160 161
|
syl3anbrc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 163 |
|
dvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ 2 ∈ ℕ0 ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 ↑ 2 ) ∥ ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 164 |
96 121 162 163
|
mp3an12i |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 ↑ 2 ) ∥ ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 165 |
120 164
|
eqbrtrrid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 4 ∥ ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 166 |
165 143
|
breqtrrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 4 ∥ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 167 |
|
dvdseq |
⊢ ( ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ∧ 4 ∈ ℕ0 ) ∧ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ∧ 4 ∥ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 4 ) |
| 168 |
109 111 119 166 167
|
syl22anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 4 ) |
| 169 |
168 118
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
| 170 |
1 98 106 107 169
|
iscygodd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐺 ∈ CycGrp ) |
| 171 |
170 76
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐺 ∈ Abel ) |
| 172 |
171
|
rexlimdvaa |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ∃ 𝑥 ∈ 𝐵 ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 173 |
105 172
|
biimtrrid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ¬ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 174 |
104 173
|
pm2.61d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐺 ∈ Abel ) |
| 175 |
174
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 4 → 𝐺 ∈ Abel ) ) |
| 176 |
94 175
|
jaod |
⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐺 ∈ Abel ) ) |
| 177 |
42 176
|
biimtrid |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) → 𝐺 ∈ Abel ) ) |
| 178 |
|
id |
⊢ ( ( ♯ ‘ 𝐵 ) = 5 → ( ♯ ‘ 𝐵 ) = 5 ) |
| 179 |
|
5prm |
⊢ 5 ∈ ℙ |
| 180 |
178 179
|
eqeltrdi |
⊢ ( ( ♯ ‘ 𝐵 ) = 5 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
| 181 |
180 85
|
syl5 |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 5 → 𝐺 ∈ Abel ) ) |
| 182 |
177 181
|
jaod |
⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) → 𝐺 ∈ Abel ) ) |
| 183 |
34 182
|
biimtrid |
⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) → 𝐺 ∈ Abel ) ) |
| 184 |
183
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ) → 𝐺 ∈ Abel ) |
| 185 |
26 184
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 𝐺 ∈ Abel ) |