Metamath Proof Explorer
Description: Addition to both sides of 'less than'. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
letrd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
ltletrd.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
|
Assertion |
ltadd2dd |
⊢ ( 𝜑 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
letrd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
ltletrd.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 5 |
1 2 3
|
ltadd2d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) |
| 6 |
4 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) |