Metamath Proof Explorer
Description: Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997) (Proof shortened by OpenAI, 25-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
lt.1 |
⊢ 𝐴 ∈ ℝ |
|
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
|
|
lt.3 |
⊢ 𝐶 ∈ ℝ |
|
Assertion |
ltadd2i |
⊢ ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lt.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
lt.3 |
⊢ 𝐶 ∈ ℝ |
4 |
|
ltadd2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) |