Metamath Proof Explorer


Theorem ltadd2i

Description: Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion ltadd2i ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 lt.3 𝐶 ∈ ℝ
4 ltadd2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) )
5 1 2 3 4 mp3an ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) )