Metamath Proof Explorer


Theorem ltaddnegr

Description: Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021)

Ref Expression
Assertion ltaddnegr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐴 + 𝐵 ) < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ltaddneg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < 𝐵 ) )
2 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
3 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
4 addcom ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) )
5 2 3 4 syl2anr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) )
6 5 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 + 𝐴 ) < 𝐵 ↔ ( 𝐴 + 𝐵 ) < 𝐵 ) )
7 1 6 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐴 + 𝐵 ) < 𝐵 ) )