Description: The sum of two positive reals is greater than one of them. (Contributed by NM, 13-May-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ltaddpr2 | ⊢ ( 𝐶 ∈ P → ( ( 𝐴 +P 𝐵 ) = 𝐶 → 𝐴 <P 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( ( 𝐴 +P 𝐵 ) ∈ P ↔ 𝐶 ∈ P ) ) | |
2 | dmplp | ⊢ dom +P = ( P × P ) | |
3 | 0npr | ⊢ ¬ ∅ ∈ P | |
4 | 2 3 | ndmovrcl | ⊢ ( ( 𝐴 +P 𝐵 ) ∈ P → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) |
5 | 1 4 | syl6bir | ⊢ ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( 𝐶 ∈ P → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ) |
6 | ltaddpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → 𝐴 <P ( 𝐴 +P 𝐵 ) ) | |
7 | breq2 | ⊢ ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( 𝐴 <P ( 𝐴 +P 𝐵 ) ↔ 𝐴 <P 𝐶 ) ) | |
8 | 6 7 | syl5ib | ⊢ ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → 𝐴 <P 𝐶 ) ) |
9 | 5 8 | syldc | ⊢ ( 𝐶 ∈ P → ( ( 𝐴 +P 𝐵 ) = 𝐶 → 𝐴 <P 𝐶 ) ) |