Metamath Proof Explorer


Theorem ltaddpr2

Description: The sum of two positive reals is greater than one of them. (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion ltaddpr2 ( 𝐶P → ( ( 𝐴 +P 𝐵 ) = 𝐶𝐴 <P 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( ( 𝐴 +P 𝐵 ) ∈ P𝐶P ) )
2 dmplp dom +P = ( P × P )
3 0npr ¬ ∅ ∈ P
4 2 3 ndmovrcl ( ( 𝐴 +P 𝐵 ) ∈ P → ( 𝐴P𝐵P ) )
5 1 4 syl6bir ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( 𝐶P → ( 𝐴P𝐵P ) ) )
6 ltaddpr ( ( 𝐴P𝐵P ) → 𝐴 <P ( 𝐴 +P 𝐵 ) )
7 breq2 ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( 𝐴 <P ( 𝐴 +P 𝐵 ) ↔ 𝐴 <P 𝐶 ) )
8 6 7 syl5ib ( ( 𝐴 +P 𝐵 ) = 𝐶 → ( ( 𝐴P𝐵P ) → 𝐴 <P 𝐶 ) )
9 5 8 syldc ( 𝐶P → ( ( 𝐴 +P 𝐵 ) = 𝐶𝐴 <P 𝐶 ) )