Metamath Proof Explorer


Theorem ltaddrp

Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion ltaddrp ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 < ( 𝐴 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elrp ( 𝐵 ∈ ℝ+ ↔ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
2 ltaddpos ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐵𝐴 < ( 𝐴 + 𝐵 ) ) )
3 2 biimpd ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐵𝐴 < ( 𝐴 + 𝐵 ) ) )
4 3 expcom ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 < 𝐵𝐴 < ( 𝐴 + 𝐵 ) ) ) )
5 4 imp32 ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 < ( 𝐴 + 𝐵 ) )
6 1 5 sylan2b ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 < ( 𝐴 + 𝐵 ) )