Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ltaddrp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 < ( 𝐴 + 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp | ⊢ ( 𝐵 ∈ ℝ+ ↔ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
2 | ltaddpos | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐵 ↔ 𝐴 < ( 𝐴 + 𝐵 ) ) ) | |
3 | 2 | biimpd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐵 → 𝐴 < ( 𝐴 + 𝐵 ) ) ) |
4 | 3 | expcom | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → 𝐴 < ( 𝐴 + 𝐵 ) ) ) ) |
5 | 4 | imp32 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 < ( 𝐴 + 𝐵 ) ) |
6 | 1 5 | sylan2b | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 < ( 𝐴 + 𝐵 ) ) |