Metamath Proof Explorer
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpgecld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
rpgecld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
|
Assertion |
ltaddrp2d |
⊢ ( 𝜑 → 𝐴 < ( 𝐵 + 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpgecld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
rpgecld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
1 2
|
ltaddrpd |
⊢ ( 𝜑 → 𝐴 < ( 𝐴 + 𝐵 ) ) |
4 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
5 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
6 |
4 5
|
addcomd |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
7 |
3 6
|
breqtrd |
⊢ ( 𝜑 → 𝐴 < ( 𝐵 + 𝐴 ) ) |