Metamath Proof Explorer
		
		
		
		Description:  'Less than' relationship between subtraction and addition.  (Contributed by NM, 14-May-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lt2.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | lt2.2 | ⊢ 𝐵  ∈  ℝ | 
					
						|  |  | lt2.3 | ⊢ 𝐶  ∈  ℝ | 
				
					|  | Assertion | ltaddsubi | ⊢  ( ( 𝐴  +  𝐵 )  <  𝐶  ↔  𝐴  <  ( 𝐶  −  𝐵 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lt2.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | lt2.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | lt2.3 | ⊢ 𝐶  ∈  ℝ | 
						
							| 4 |  | ltaddsub | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  <  𝐶  ↔  𝐴  <  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 5 | 1 2 3 4 | mp3an | ⊢ ( ( 𝐴  +  𝐵 )  <  𝐶  ↔  𝐴  <  ( 𝐶  −  𝐵 ) ) |