Step |
Hyp |
Ref |
Expression |
1 |
|
dmplp |
⊢ dom +P = ( P × P ) |
2 |
|
ltrelpr |
⊢ <P ⊆ ( P × P ) |
3 |
|
0npr |
⊢ ¬ ∅ ∈ P |
4 |
|
ltaprlem |
⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
6 |
|
olc |
⊢ ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
7 |
|
ltaprlem |
⊢ ( 𝐶 ∈ P → ( 𝐵 <P 𝐴 → ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐵 <P 𝐴 → ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ) ) |
9 |
|
ltsopr |
⊢ <P Or P |
10 |
|
sotric |
⊢ ( ( <P Or P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐵 <P 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
11 |
9 10
|
mpan |
⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐵 <P 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐵 <P 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
13 |
|
addclpr |
⊢ ( ( 𝐶 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐶 +P 𝐵 ) ∈ P ) |
14 |
|
addclpr |
⊢ ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) ∈ P ) |
15 |
13 14
|
anim12dan |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐵 ) ∈ P ∧ ( 𝐶 +P 𝐴 ) ∈ P ) ) |
16 |
|
sotric |
⊢ ( ( <P Or P ∧ ( ( 𝐶 +P 𝐵 ) ∈ P ∧ ( 𝐶 +P 𝐴 ) ∈ P ) ) → ( ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ↔ ¬ ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
17 |
9 15 16
|
sylancr |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐵 ) <P ( 𝐶 +P 𝐴 ) ↔ ¬ ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
18 |
8 12 17
|
3imtr3d |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ¬ ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) → ¬ ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
19 |
18
|
con4d |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ∨ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) → ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
20 |
6 19
|
syl5 |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ) ) |
21 |
|
df-or |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 <P 𝐵 ) ↔ ( ¬ 𝐵 = 𝐴 → 𝐴 <P 𝐵 ) ) |
22 |
20 21
|
syl6ib |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → ( ¬ 𝐵 = 𝐴 → 𝐴 <P 𝐵 ) ) ) |
23 |
22
|
com23 |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ¬ 𝐵 = 𝐴 → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → 𝐴 <P 𝐵 ) ) ) |
24 |
9 2
|
soirri |
⊢ ¬ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐴 ) |
25 |
|
oveq2 |
⊢ ( 𝐵 = 𝐴 → ( 𝐶 +P 𝐵 ) = ( 𝐶 +P 𝐴 ) ) |
26 |
25
|
breq2d |
⊢ ( 𝐵 = 𝐴 → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐴 ) ) ) |
27 |
24 26
|
mtbiri |
⊢ ( 𝐵 = 𝐴 → ¬ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) |
28 |
27
|
pm2.21d |
⊢ ( 𝐵 = 𝐴 → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → 𝐴 <P 𝐵 ) ) |
29 |
23 28
|
pm2.61d2 |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) → 𝐴 <P 𝐵 ) ) |
30 |
5 29
|
impbid |
⊢ ( ( 𝐶 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ∈ P ) ) → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
31 |
30
|
3impb |
⊢ ( ( 𝐶 ∈ P ∧ 𝐵 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
32 |
31
|
3com13 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
33 |
1 2 3 32
|
ndmovord |
⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |