Metamath Proof Explorer


Theorem ltaprlem

Description: Lemma for Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion ltaprlem ( 𝐶P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ltrelpr <P ⊆ ( P × P )
2 1 brel ( 𝐴 <P 𝐵 → ( 𝐴P𝐵P ) )
3 2 simpld ( 𝐴 <P 𝐵𝐴P )
4 ltexpri ( 𝐴 <P 𝐵 → ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 )
5 addclpr ( ( 𝐶P𝐴P ) → ( 𝐶 +P 𝐴 ) ∈ P )
6 ltaddpr ( ( ( 𝐶 +P 𝐴 ) ∈ P𝑥P ) → ( 𝐶 +P 𝐴 ) <P ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) )
7 addasspr ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) = ( 𝐶 +P ( 𝐴 +P 𝑥 ) )
8 oveq2 ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( 𝐶 +P ( 𝐴 +P 𝑥 ) ) = ( 𝐶 +P 𝐵 ) )
9 7 8 eqtrid ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) = ( 𝐶 +P 𝐵 ) )
10 9 breq2d ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) <P ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) )
11 6 10 syl5ib ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( ( 𝐶 +P 𝐴 ) ∈ P𝑥P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) )
12 11 expd ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) ∈ P → ( 𝑥P → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) )
13 5 12 syl5 ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶P𝐴P ) → ( 𝑥P → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) )
14 13 com3r ( 𝑥P → ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶P𝐴P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) )
15 14 rexlimiv ( ∃ 𝑥P ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶P𝐴P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) )
16 4 15 syl ( 𝐴 <P 𝐵 → ( ( 𝐶P𝐴P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) )
17 3 16 sylan2i ( 𝐴 <P 𝐵 → ( ( 𝐶P𝐴 <P 𝐵 ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) )
18 17 expd ( 𝐴 <P 𝐵 → ( 𝐶P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) )
19 18 pm2.43b ( 𝐶P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) )