Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelpr |
⊢ <P ⊆ ( P × P ) |
2 |
1
|
brel |
⊢ ( 𝐴 <P 𝐵 → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) |
3 |
2
|
simpld |
⊢ ( 𝐴 <P 𝐵 → 𝐴 ∈ P ) |
4 |
|
ltexpri |
⊢ ( 𝐴 <P 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |
5 |
|
addclpr |
⊢ ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) ∈ P ) |
6 |
|
ltaddpr |
⊢ ( ( ( 𝐶 +P 𝐴 ) ∈ P ∧ 𝑥 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) ) |
7 |
|
addasspr |
⊢ ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) = ( 𝐶 +P ( 𝐴 +P 𝑥 ) ) |
8 |
|
oveq2 |
⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( 𝐶 +P ( 𝐴 +P 𝑥 ) ) = ( 𝐶 +P 𝐵 ) ) |
9 |
7 8
|
eqtrid |
⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) = ( 𝐶 +P 𝐵 ) ) |
10 |
9
|
breq2d |
⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) <P ( ( 𝐶 +P 𝐴 ) +P 𝑥 ) ↔ ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
11 |
6 10
|
syl5ib |
⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( ( 𝐶 +P 𝐴 ) ∈ P ∧ 𝑥 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
12 |
11
|
expd |
⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 +P 𝐴 ) ∈ P → ( 𝑥 ∈ P → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
13 |
5 12
|
syl5 |
⊢ ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝑥 ∈ P → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
14 |
13
|
com3r |
⊢ ( 𝑥 ∈ P → ( ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
15 |
14
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
16 |
4 15
|
syl |
⊢ ( 𝐴 <P 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 ∈ P ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
17 |
3 16
|
sylan2i |
⊢ ( 𝐴 <P 𝐵 → ( ( 𝐶 ∈ P ∧ 𝐴 <P 𝐵 ) → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |
18 |
17
|
expd |
⊢ ( 𝐴 <P 𝐵 → ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) ) |
19 |
18
|
pm2.43b |
⊢ ( 𝐶 ∈ P → ( 𝐴 <P 𝐵 → ( 𝐶 +P 𝐴 ) <P ( 𝐶 +P 𝐵 ) ) ) |