Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
2 |
1
|
brel |
⊢ ( 𝐴 <Q 𝐵 → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
3 |
2
|
simprd |
⊢ ( 𝐴 <Q 𝐵 → 𝐵 ∈ Q ) |
4 |
|
ltexnq |
⊢ ( 𝐵 ∈ Q → ( 𝐴 <Q 𝐵 ↔ ∃ 𝑦 ( 𝐴 +Q 𝑦 ) = 𝐵 ) ) |
5 |
|
eleq1 |
⊢ ( ( 𝐴 +Q 𝑦 ) = 𝐵 → ( ( 𝐴 +Q 𝑦 ) ∈ Q ↔ 𝐵 ∈ Q ) ) |
6 |
5
|
biimparc |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝐴 +Q 𝑦 ) ∈ Q ) |
7 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
8 |
7
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
9 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
10 |
8 9
|
ndmovrcl |
⊢ ( ( 𝐴 +Q 𝑦 ) ∈ Q → ( 𝐴 ∈ Q ∧ 𝑦 ∈ Q ) ) |
11 |
6 10
|
syl |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝐴 ∈ Q ∧ 𝑦 ∈ Q ) ) |
12 |
11
|
simprd |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → 𝑦 ∈ Q ) |
13 |
|
nsmallnq |
⊢ ( 𝑦 ∈ Q → ∃ 𝑧 𝑧 <Q 𝑦 ) |
14 |
11
|
simpld |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → 𝐴 ∈ Q ) |
15 |
1
|
brel |
⊢ ( 𝑧 <Q 𝑦 → ( 𝑧 ∈ Q ∧ 𝑦 ∈ Q ) ) |
16 |
15
|
simpld |
⊢ ( 𝑧 <Q 𝑦 → 𝑧 ∈ Q ) |
17 |
|
ltaddnq |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑧 ∈ Q ) → 𝐴 <Q ( 𝐴 +Q 𝑧 ) ) |
18 |
14 16 17
|
syl2an |
⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → 𝐴 <Q ( 𝐴 +Q 𝑧 ) ) |
19 |
|
ltanq |
⊢ ( 𝐴 ∈ Q → ( 𝑧 <Q 𝑦 ↔ ( 𝐴 +Q 𝑧 ) <Q ( 𝐴 +Q 𝑦 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑧 ) <Q ( 𝐴 +Q 𝑦 ) ) |
21 |
14 20
|
sylan |
⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑧 ) <Q ( 𝐴 +Q 𝑦 ) ) |
22 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑦 ) = 𝐵 ) |
23 |
21 22
|
breqtrd |
⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) |
24 |
|
ovex |
⊢ ( 𝐴 +Q 𝑧 ) ∈ V |
25 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐴 +Q 𝑧 ) → ( 𝐴 <Q 𝑥 ↔ 𝐴 <Q ( 𝐴 +Q 𝑧 ) ) ) |
26 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 +Q 𝑧 ) → ( 𝑥 <Q 𝐵 ↔ ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) ) |
27 |
25 26
|
anbi12d |
⊢ ( 𝑥 = ( 𝐴 +Q 𝑧 ) → ( ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ↔ ( 𝐴 <Q ( 𝐴 +Q 𝑧 ) ∧ ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) ) ) |
28 |
24 27
|
spcev |
⊢ ( ( 𝐴 <Q ( 𝐴 +Q 𝑧 ) ∧ ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
29 |
18 23 28
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
30 |
29
|
ex |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝑧 <Q 𝑦 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
31 |
30
|
exlimdv |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( ∃ 𝑧 𝑧 <Q 𝑦 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
32 |
13 31
|
syl5 |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝑦 ∈ Q → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
33 |
12 32
|
mpd |
⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
34 |
33
|
ex |
⊢ ( 𝐵 ∈ Q → ( ( 𝐴 +Q 𝑦 ) = 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
35 |
34
|
exlimdv |
⊢ ( 𝐵 ∈ Q → ( ∃ 𝑦 ( 𝐴 +Q 𝑦 ) = 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
36 |
4 35
|
sylbid |
⊢ ( 𝐵 ∈ Q → ( 𝐴 <Q 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
37 |
3 36
|
mpcom |
⊢ ( 𝐴 <Q 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
38 |
|
ltsonq |
⊢ <Q Or Q |
39 |
38 1
|
sotri |
⊢ ( ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) → 𝐴 <Q 𝐵 ) |
40 |
39
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) → 𝐴 <Q 𝐵 ) |
41 |
37 40
|
impbii |
⊢ ( 𝐴 <Q 𝐵 ↔ ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |