Step |
Hyp |
Ref |
Expression |
1 |
|
ltbval.c |
⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) |
2 |
|
ltbval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
3 |
|
ltbval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
ltbval.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) |
5 |
|
ltbwe.w |
⊢ ( 𝜑 → 𝑇 We 𝐼 ) |
6 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
7 |
|
breq1 |
⊢ ( ℎ = 𝑥 → ( ℎ finSupp 0 ↔ 𝑥 finSupp 0 ) ) |
8 |
7
|
cbvrabv |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ 𝑥 finSupp 0 } |
9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
10 |
|
ltweuz |
⊢ < We ( ℤ≥ ‘ 0 ) |
11 |
|
weeq2 |
⊢ ( ℕ0 = ( ℤ≥ ‘ 0 ) → ( < We ℕ0 ↔ < We ( ℤ≥ ‘ 0 ) ) ) |
12 |
10 11
|
mpbiri |
⊢ ( ℕ0 = ( ℤ≥ ‘ 0 ) → < We ℕ0 ) |
13 |
9 12
|
mp1i |
⊢ ( 𝜑 → < We ℕ0 ) |
14 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
15 |
|
ne0i |
⊢ ( 0 ∈ ℕ0 → ℕ0 ≠ ∅ ) |
16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ℕ0 ≠ ∅ ) |
17 |
|
eqid |
⊢ OrdIso ( 𝑇 , 𝐼 ) = OrdIso ( 𝑇 , 𝐼 ) |
18 |
|
0z |
⊢ 0 ∈ ℤ |
19 |
|
hashgval2 |
⊢ ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
20 |
18 19
|
om2uzoi |
⊢ ( ♯ ↾ ω ) = OrdIso ( < , ( ℤ≥ ‘ 0 ) ) |
21 |
|
oieq2 |
⊢ ( ℕ0 = ( ℤ≥ ‘ 0 ) → OrdIso ( < , ℕ0 ) = OrdIso ( < , ( ℤ≥ ‘ 0 ) ) ) |
22 |
9 21
|
ax-mp |
⊢ OrdIso ( < , ℕ0 ) = OrdIso ( < , ( ℤ≥ ‘ 0 ) ) |
23 |
20 22
|
eqtr4i |
⊢ ( ♯ ↾ ω ) = OrdIso ( < , ℕ0 ) |
24 |
|
peano1 |
⊢ ∅ ∈ ω |
25 |
|
fvres |
⊢ ( ∅ ∈ ω → ( ( ♯ ↾ ω ) ‘ ∅ ) = ( ♯ ‘ ∅ ) ) |
26 |
24 25
|
ax-mp |
⊢ ( ( ♯ ↾ ω ) ‘ ∅ ) = ( ♯ ‘ ∅ ) |
27 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
28 |
26 27
|
eqtr2i |
⊢ 0 = ( ( ♯ ↾ ω ) ‘ ∅ ) |
29 |
6 8 5 13 16 17 23 28
|
wemapwe |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
30 |
|
elmapfun |
⊢ ( ℎ ∈ ( ℕ0 ↑m 𝐼 ) → Fun ℎ ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → Fun ℎ ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) |
33 |
|
c0ex |
⊢ 0 ∈ V |
34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → 0 ∈ V ) |
35 |
|
funisfsupp |
⊢ ( ( Fun ℎ ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∧ 0 ∈ V ) → ( ℎ finSupp 0 ↔ ( ℎ supp 0 ) ∈ Fin ) ) |
36 |
31 32 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ( ℎ finSupp 0 ↔ ( ℎ supp 0 ) ∈ Fin ) ) |
37 |
|
elmapi |
⊢ ( ℎ ∈ ( ℕ0 ↑m 𝐼 ) → ℎ : 𝐼 ⟶ ℕ0 ) |
38 |
|
frnnn0supp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ℎ : 𝐼 ⟶ ℕ0 ) → ( ℎ supp 0 ) = ( ◡ ℎ “ ℕ ) ) |
39 |
38
|
eleq1d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ℎ : 𝐼 ⟶ ℕ0 ) → ( ( ℎ supp 0 ) ∈ Fin ↔ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) |
40 |
3 37 39
|
syl2an |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ( ( ℎ supp 0 ) ∈ Fin ↔ ( ◡ ℎ “ ℕ ) ∈ Fin ) ) |
41 |
36 40
|
bitr2d |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m 𝐼 ) ) → ( ( ◡ ℎ “ ℕ ) ∈ Fin ↔ ℎ finSupp 0 ) ) |
42 |
41
|
rabbidva |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
43 |
2 42
|
eqtrid |
⊢ ( 𝜑 → 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
44 |
|
weeq2 |
⊢ ( 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ↔ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ↔ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
46 |
29 45
|
mpbird |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ) |
47 |
|
weinxp |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } We 𝐷 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) |
48 |
46 47
|
sylib |
⊢ ( 𝜑 → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) |
49 |
1 2 3 4
|
ltbval |
⊢ ( 𝜑 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
50 |
|
df-xp |
⊢ ( 𝐷 × 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) } |
51 |
|
vex |
⊢ 𝑥 ∈ V |
52 |
|
vex |
⊢ 𝑦 ∈ V |
53 |
51 52
|
prss |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
54 |
53
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) } = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } |
55 |
50 54
|
eqtr2i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } = ( 𝐷 × 𝐷 ) |
56 |
55
|
ineq1i |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) = ( ( 𝐷 × 𝐷 ) ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) |
57 |
|
inopab |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } |
58 |
|
incom |
⊢ ( ( 𝐷 × 𝐷 ) ∩ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) |
59 |
56 57 58
|
3eqtr3i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) |
60 |
49 59
|
eqtrdi |
⊢ ( 𝜑 → 𝐶 = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) ) |
61 |
|
weeq1 |
⊢ ( 𝐶 = ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) → ( 𝐶 We 𝐷 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) ) |
62 |
60 61
|
syl |
⊢ ( 𝜑 → ( 𝐶 We 𝐷 ↔ ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) ) |
63 |
48 62
|
mpbird |
⊢ ( 𝜑 → 𝐶 We 𝐷 ) |