Metamath Proof Explorer


Theorem ltbwe

Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Hypotheses ltbval.c 𝐶 = ( 𝑇 <bag 𝐼 )
ltbval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
ltbval.i ( 𝜑𝐼𝑉 )
ltbval.t ( 𝜑𝑇𝑊 )
ltbwe.w ( 𝜑𝑇 We 𝐼 )
Assertion ltbwe ( 𝜑𝐶 We 𝐷 )

Proof

Step Hyp Ref Expression
1 ltbval.c 𝐶 = ( 𝑇 <bag 𝐼 )
2 ltbval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
3 ltbval.i ( 𝜑𝐼𝑉 )
4 ltbval.t ( 𝜑𝑇𝑊 )
5 ltbwe.w ( 𝜑𝑇 We 𝐼 )
6 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) }
7 breq1 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0 ) )
8 7 cbvrabv { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } = { 𝑥 ∈ ( ℕ0m 𝐼 ) ∣ 𝑥 finSupp 0 }
9 nn0uz 0 = ( ℤ ‘ 0 )
10 ltweuz < We ( ℤ ‘ 0 )
11 weeq2 ( ℕ0 = ( ℤ ‘ 0 ) → ( < We ℕ0 ↔ < We ( ℤ ‘ 0 ) ) )
12 10 11 mpbiri ( ℕ0 = ( ℤ ‘ 0 ) → < We ℕ0 )
13 9 12 mp1i ( 𝜑 → < We ℕ0 )
14 0nn0 0 ∈ ℕ0
15 ne0i ( 0 ∈ ℕ0 → ℕ0 ≠ ∅ )
16 14 15 mp1i ( 𝜑 → ℕ0 ≠ ∅ )
17 eqid OrdIso ( 𝑇 , 𝐼 ) = OrdIso ( 𝑇 , 𝐼 )
18 0z 0 ∈ ℤ
19 hashgval2 ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω )
20 18 19 om2uzoi ( ♯ ↾ ω ) = OrdIso ( < , ( ℤ ‘ 0 ) )
21 oieq2 ( ℕ0 = ( ℤ ‘ 0 ) → OrdIso ( < , ℕ0 ) = OrdIso ( < , ( ℤ ‘ 0 ) ) )
22 9 21 ax-mp OrdIso ( < , ℕ0 ) = OrdIso ( < , ( ℤ ‘ 0 ) )
23 20 22 eqtr4i ( ♯ ↾ ω ) = OrdIso ( < , ℕ0 )
24 peano1 ∅ ∈ ω
25 fvres ( ∅ ∈ ω → ( ( ♯ ↾ ω ) ‘ ∅ ) = ( ♯ ‘ ∅ ) )
26 24 25 ax-mp ( ( ♯ ↾ ω ) ‘ ∅ ) = ( ♯ ‘ ∅ )
27 hash0 ( ♯ ‘ ∅ ) = 0
28 26 27 eqtr2i 0 = ( ( ♯ ↾ ω ) ‘ ∅ )
29 6 8 5 13 16 17 23 28 wemapwe ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } We { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
30 elmapfun ( ∈ ( ℕ0m 𝐼 ) → Fun )
31 30 adantl ( ( 𝜑 ∈ ( ℕ0m 𝐼 ) ) → Fun )
32 simpr ( ( 𝜑 ∈ ( ℕ0m 𝐼 ) ) → ∈ ( ℕ0m 𝐼 ) )
33 c0ex 0 ∈ V
34 33 a1i ( ( 𝜑 ∈ ( ℕ0m 𝐼 ) ) → 0 ∈ V )
35 funisfsupp ( ( Fun ∈ ( ℕ0m 𝐼 ) ∧ 0 ∈ V ) → ( finSupp 0 ↔ ( supp 0 ) ∈ Fin ) )
36 31 32 34 35 syl3anc ( ( 𝜑 ∈ ( ℕ0m 𝐼 ) ) → ( finSupp 0 ↔ ( supp 0 ) ∈ Fin ) )
37 elmapi ( ∈ ( ℕ0m 𝐼 ) → : 𝐼 ⟶ ℕ0 )
38 frnnn0supp ( ( 𝐼𝑉 : 𝐼 ⟶ ℕ0 ) → ( supp 0 ) = ( “ ℕ ) )
39 38 eleq1d ( ( 𝐼𝑉 : 𝐼 ⟶ ℕ0 ) → ( ( supp 0 ) ∈ Fin ↔ ( “ ℕ ) ∈ Fin ) )
40 3 37 39 syl2an ( ( 𝜑 ∈ ( ℕ0m 𝐼 ) ) → ( ( supp 0 ) ∈ Fin ↔ ( “ ℕ ) ∈ Fin ) )
41 36 40 bitr2d ( ( 𝜑 ∈ ( ℕ0m 𝐼 ) ) → ( ( “ ℕ ) ∈ Fin ↔ finSupp 0 ) )
42 41 rabbidva ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
43 2 42 syl5eq ( 𝜑𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
44 weeq2 ( 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } We 𝐷 ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } We { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) )
45 43 44 syl ( 𝜑 → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } We 𝐷 ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } We { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) )
46 29 45 mpbird ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } We 𝐷 )
47 weinxp ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } We 𝐷 ↔ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 )
48 46 47 sylib ( 𝜑 → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 )
49 1 2 3 4 ltbval ( 𝜑𝐶 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ) } )
50 df-xp ( 𝐷 × 𝐷 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐷𝑦𝐷 ) }
51 vex 𝑥 ∈ V
52 vex 𝑦 ∈ V
53 51 52 prss ( ( 𝑥𝐷𝑦𝐷 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 )
54 53 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐷𝑦𝐷 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 }
55 50 54 eqtr2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } = ( 𝐷 × 𝐷 )
56 55 ineq1i ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ) = ( ( 𝐷 × 𝐷 ) ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } )
57 inopab ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ⊆ 𝐷 } ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ) }
58 incom ( ( 𝐷 × 𝐷 ) ∩ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ) = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) )
59 56 57 58 3eqtr3i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ) } = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) )
60 49 59 eqtrdi ( 𝜑𝐶 = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) )
61 weeq1 ( 𝐶 = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) → ( 𝐶 We 𝐷 ↔ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) )
62 60 61 syl ( 𝜑 → ( 𝐶 We 𝐷 ↔ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐼 ( ( 𝑥𝑧 ) < ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } ∩ ( 𝐷 × 𝐷 ) ) We 𝐷 ) )
63 48 62 mpbird ( 𝜑𝐶 We 𝐷 )