| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltltncvr.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ltltncvr.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 3 |  | ltltncvr.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 4 | 1 2 3 | cvrlt | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑌 𝐶 𝑍 )  →  𝑌  <  𝑍 ) | 
						
							| 5 | 4 | ex | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑌 𝐶 𝑍  →  𝑌  <  𝑍 ) ) | 
						
							| 6 | 5 | 3adant3r1 | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑌 𝐶 𝑍  →  𝑌  <  𝑍 ) ) | 
						
							| 7 | 1 2 3 | ltltncvr | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  <  𝑌  ∧  𝑌  <  𝑍 )  →  ¬  𝑋 𝐶 𝑍 ) ) | 
						
							| 8 | 6 7 | sylan2d | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  <  𝑌  ∧  𝑌 𝐶 𝑍 )  →  ¬  𝑋 𝐶 𝑍 ) ) |