Metamath Proof Explorer


Theorem ltdiv1dd

Description: Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses ltmul1d.1 ( 𝜑𝐴 ∈ ℝ )
ltmul1d.2 ( 𝜑𝐵 ∈ ℝ )
ltmul1d.3 ( 𝜑𝐶 ∈ ℝ+ )
ltdiv1dd.4 ( 𝜑𝐴 < 𝐵 )
Assertion ltdiv1dd ( 𝜑 → ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ltmul1d.1 ( 𝜑𝐴 ∈ ℝ )
2 ltmul1d.2 ( 𝜑𝐵 ∈ ℝ )
3 ltmul1d.3 ( 𝜑𝐶 ∈ ℝ+ )
4 ltdiv1dd.4 ( 𝜑𝐴 < 𝐵 )
5 1 2 3 ltdiv1d ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) )
6 4 5 mpbid ( 𝜑 → ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) )