Metamath Proof Explorer
Description: Division of both sides of 'less than' by a positive number.
(Contributed by NM, 16-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
|
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
|
|
ltmul1.3 |
⊢ 𝐶 ∈ ℝ |
|
|
ltmul1i.4 |
⊢ 0 < 𝐶 |
|
Assertion |
ltdiv1ii |
⊢ ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
ltmul1.3 |
⊢ 𝐶 ∈ ℝ |
4 |
|
ltmul1i.4 |
⊢ 0 < 𝐶 |
5 |
1 2 3
|
ltdiv1i |
⊢ ( 0 < 𝐶 → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) |