Metamath Proof Explorer


Theorem ltdiv1ii

Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
ltmul1i.4 0 < 𝐶
Assertion ltdiv1ii ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1 𝐴 ∈ ℝ
2 prodgt0.2 𝐵 ∈ ℝ
3 ltmul1.3 𝐶 ∈ ℝ
4 ltmul1i.4 0 < 𝐶
5 1 2 3 ltdiv1i ( 0 < 𝐶 → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) )
6 4 5 ax-mp ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) )