Step |
Hyp |
Ref |
Expression |
1 |
|
ltrec |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
2 |
1
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
3 |
|
gt0ne0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) |
4 |
|
rereccl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
5 |
3 4
|
syldan |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
6 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
7 |
|
rereccl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
8 |
6 7
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
9 |
|
ltmul2 |
⊢ ( ( ( 1 / 𝐵 ) ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
10 |
8 9
|
syl3an2 |
⊢ ( ( ( 1 / 𝐵 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
11 |
5 10
|
syl3an1 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
12 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
13 |
12
|
adantr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ∈ ℂ ) |
14 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ ) |
16 |
15 3
|
jca |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
17 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
19 |
18 6
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
20 |
|
divrec |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐶 / 𝐵 ) = ( 𝐶 · ( 1 / 𝐵 ) ) ) |
21 |
20
|
3expb |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 / 𝐵 ) = ( 𝐶 · ( 1 / 𝐵 ) ) ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐵 ) = ( 𝐶 · ( 1 / 𝐵 ) ) ) |
23 |
|
divrec |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐶 / 𝐴 ) = ( 𝐶 · ( 1 / 𝐴 ) ) ) |
24 |
23
|
3expb |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐴 ) = ( 𝐶 · ( 1 / 𝐴 ) ) ) |
25 |
24
|
3adant2 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐴 ) = ( 𝐶 · ( 1 / 𝐴 ) ) ) |
26 |
22 25
|
breq12d |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
27 |
13 16 19 26
|
syl3an |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
28 |
27
|
3coml |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
29 |
11 28
|
bitr4d |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |
30 |
29
|
3com12 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |
31 |
2 30
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |