Metamath Proof Explorer
		
		
		
		Description:  Swap denominator with other side of 'less than'.  (Contributed by NM, 26-Sep-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | prodgt0.2 | ⊢ 𝐵  ∈  ℝ | 
					
						|  |  | ltmul1.3 | ⊢ 𝐶  ∈  ℝ | 
					
						|  |  | ltdiv23i.4 | ⊢ 0  <  𝐵 | 
					
						|  |  | ltdiv23i.5 | ⊢ 0  <  𝐶 | 
				
					|  | Assertion | ltdiv23ii | ⊢  ( ( 𝐴  /  𝐵 )  <  𝐶  ↔  ( 𝐴  /  𝐶 )  <  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | prodgt0.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | ltmul1.3 | ⊢ 𝐶  ∈  ℝ | 
						
							| 4 |  | ltdiv23i.4 | ⊢ 0  <  𝐵 | 
						
							| 5 |  | ltdiv23i.5 | ⊢ 0  <  𝐶 | 
						
							| 6 | 1 2 3 | ltdiv23i | ⊢ ( ( 0  <  𝐵  ∧  0  <  𝐶 )  →  ( ( 𝐴  /  𝐵 )  <  𝐶  ↔  ( 𝐴  /  𝐶 )  <  𝐵 ) ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( ( 𝐴  /  𝐵 )  <  𝐶  ↔  ( 𝐴  /  𝐶 )  <  𝐵 ) |