Step |
Hyp |
Ref |
Expression |
1 |
|
ltdiv23neg.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltdiv23neg.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ltdiv23neg.3 |
⊢ ( 𝜑 → 𝐵 < 0 ) |
4 |
|
ltdiv23neg.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
ltdiv23neg.5 |
⊢ ( 𝜑 → 𝐶 < 0 ) |
6 |
2 3
|
ltned |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
7 |
1 2 6
|
redivcld |
⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
8 |
7 4 2 3
|
ltmulneg |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) < 𝐶 ↔ ( 𝐶 · 𝐵 ) < ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) ) |
9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
11 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
13 |
10 12 6
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
14 |
13
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) < ( ( 𝐴 / 𝐵 ) · 𝐵 ) ↔ ( 𝐶 · 𝐵 ) < 𝐴 ) ) |
15 |
|
remulcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
16 |
4 2 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
17 |
4 5
|
ltned |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
18 |
4 17
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℝ ) |
19 |
4 5
|
reclt0d |
⊢ ( 𝜑 → ( 1 / 𝐶 ) < 0 ) |
20 |
16 1 18 19
|
ltmulneg |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) < 𝐴 ↔ ( 𝐴 · ( 1 / 𝐶 ) ) < ( ( 𝐶 · 𝐵 ) · ( 1 / 𝐶 ) ) ) ) |
21 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
23 |
10 22 17
|
divrecd |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐴 · ( 1 / 𝐶 ) ) ) |
24 |
23
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 1 / 𝐶 ) ) = ( 𝐴 / 𝐶 ) ) |
25 |
22 12
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
26 |
25 22 17
|
divrecd |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = ( ( 𝐶 · 𝐵 ) · ( 1 / 𝐶 ) ) ) |
27 |
|
divcan3 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
28 |
27
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
29 |
12 22 17 28
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
30 |
26 29
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) · ( 1 / 𝐶 ) ) = 𝐵 ) |
31 |
24 30
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 1 / 𝐶 ) ) < ( ( 𝐶 · 𝐵 ) · ( 1 / 𝐶 ) ) ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) ) |
32 |
20 31
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) < 𝐴 ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) ) |
33 |
8 14 32
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) < 𝐶 ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) ) |