Description: Division of a positive number by both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
ltdiv2d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
Assertion | ltdiv2d | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
2 | rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
3 | ltdiv2d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
4 | 1 | rpregt0d | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
5 | 2 | rpregt0d | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
6 | 3 | rpregt0d | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
7 | ltdiv2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) | |
8 | 4 5 6 7 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |