Metamath Proof Explorer


Theorem ltdiv2d

Description: Division of a positive number by both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
ltdiv2d.3 ( 𝜑𝐶 ∈ ℝ+ )
Assertion ltdiv2d ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
3 ltdiv2d.3 ( 𝜑𝐶 ∈ ℝ+ )
4 1 rpregt0d ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
5 2 rpregt0d ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
6 3 rpregt0d ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
7 ltdiv2 ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) )
8 4 5 6 7 syl3anc ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) )