Metamath Proof Explorer
Description: Division of a positive number by both sides of 'less than'.
(Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
ltdiv2dd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
|
|
ltdiv2dd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
|
|
ltdiv2dd.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
|
|
ltdiv2dd.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
|
Assertion |
ltdiv2dd |
⊢ ( 𝜑 → ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltdiv2dd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
ltdiv2dd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
ltdiv2dd.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
ltdiv2dd.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
5 |
1 2 3
|
ltdiv2d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) |