Metamath Proof Explorer


Theorem ltdiv2dd

Description: Division of a positive number by both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltdiv2dd.a ( 𝜑𝐴 ∈ ℝ+ )
ltdiv2dd.b ( 𝜑𝐵 ∈ ℝ+ )
ltdiv2dd.c ( 𝜑𝐶 ∈ ℝ+ )
ltdiv2dd.altb ( 𝜑𝐴 < 𝐵 )
Assertion ltdiv2dd ( 𝜑 → ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltdiv2dd.a ( 𝜑𝐴 ∈ ℝ+ )
2 ltdiv2dd.b ( 𝜑𝐵 ∈ ℝ+ )
3 ltdiv2dd.c ( 𝜑𝐶 ∈ ℝ+ )
4 ltdiv2dd.altb ( 𝜑𝐴 < 𝐵 )
5 1 2 3 ltdiv2d ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) )
6 4 5 mpbid ( 𝜑 → ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) )