Metamath Proof Explorer


Theorem ltdivgt1

Description: Divsion by a number greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses ltdivgt1.1 ( 𝜑𝐴 ∈ ℝ+ )
ltdivgt1.2 ( 𝜑𝐵 ∈ ℝ+ )
Assertion ltdivgt1 ( 𝜑 → ( 1 < 𝐵 ↔ ( 𝐴 / 𝐵 ) < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltdivgt1.1 ( 𝜑𝐴 ∈ ℝ+ )
2 ltdivgt1.2 ( 𝜑𝐵 ∈ ℝ+ )
3 1rp 1 ∈ ℝ+
4 3 a1i ( 𝜑 → 1 ∈ ℝ+ )
5 4 2 1 ltdiv2d ( 𝜑 → ( 1 < 𝐵 ↔ ( 𝐴 / 𝐵 ) < ( 𝐴 / 1 ) ) )
6 1 rpcnd ( 𝜑𝐴 ∈ ℂ )
7 6 div1d ( 𝜑 → ( 𝐴 / 1 ) = 𝐴 )
8 7 breq2d ( 𝜑 → ( ( 𝐴 / 𝐵 ) < ( 𝐴 / 1 ) ↔ ( 𝐴 / 𝐵 ) < 𝐴 ) )
9 5 8 bitrd ( 𝜑 → ( 1 < 𝐵 ↔ ( 𝐴 / 𝐵 ) < 𝐴 ) )