Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
3 |
2
|
adantrr |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
5 |
|
ltdiv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 · 𝐵 ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) < ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) |
6 |
4 5
|
syld3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) < ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) |
7 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐵 ∈ ℂ ) |
9 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
10 |
9
|
ad2antrl |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐶 ∈ ℂ ) |
11 |
|
gt0ne0 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐶 ≠ 0 ) |
13 |
8 10 12
|
divcan3d |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
15 |
14
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < ( ( 𝐶 · 𝐵 ) / 𝐶 ) ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) ) |
16 |
6 15
|
bitr2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐶 · 𝐵 ) ) ) |