| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | prodgt0.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | ltmul1.3 | ⊢ 𝐶  ∈  ℝ | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 | 3 4 | readdcli | ⊢ ( 𝐶  +  1 )  ∈  ℝ | 
						
							| 6 | 3 | ltp1i | ⊢ 𝐶  <  ( 𝐶  +  1 ) | 
						
							| 7 | 3 5 6 | ltleii | ⊢ 𝐶  ≤  ( 𝐶  +  1 ) | 
						
							| 8 |  | lemul2a | ⊢ ( ( ( 𝐶  ∈  ℝ  ∧  ( 𝐶  +  1 )  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) )  ∧  𝐶  ≤  ( 𝐶  +  1 ) )  →  ( 𝐴  ·  𝐶 )  ≤  ( 𝐴  ·  ( 𝐶  +  1 ) ) ) | 
						
							| 9 | 7 8 | mpan2 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  ( 𝐶  +  1 )  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) )  →  ( 𝐴  ·  𝐶 )  ≤  ( 𝐴  ·  ( 𝐶  +  1 ) ) ) | 
						
							| 10 | 3 5 9 | mp3an12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( 𝐴  ·  𝐶 )  ≤  ( 𝐴  ·  ( 𝐶  +  1 ) ) ) | 
						
							| 11 | 1 10 | mpan | ⊢ ( 0  ≤  𝐴  →  ( 𝐴  ·  𝐶 )  ≤  ( 𝐴  ·  ( 𝐶  +  1 ) ) ) | 
						
							| 12 | 11 | 3ad2ant1 | ⊢ ( ( 0  ≤  𝐴  ∧  0  ≤  𝐶  ∧  𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) ) )  →  ( 𝐴  ·  𝐶 )  ≤  ( 𝐴  ·  ( 𝐶  +  1 ) ) ) | 
						
							| 13 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 14 | 13 3 5 | lelttri | ⊢ ( ( 0  ≤  𝐶  ∧  𝐶  <  ( 𝐶  +  1 ) )  →  0  <  ( 𝐶  +  1 ) ) | 
						
							| 15 | 6 14 | mpan2 | ⊢ ( 0  ≤  𝐶  →  0  <  ( 𝐶  +  1 ) ) | 
						
							| 16 | 5 | gt0ne0i | ⊢ ( 0  <  ( 𝐶  +  1 )  →  ( 𝐶  +  1 )  ≠  0 ) | 
						
							| 17 | 2 5 | redivclzi | ⊢ ( ( 𝐶  +  1 )  ≠  0  →  ( 𝐵  /  ( 𝐶  +  1 ) )  ∈  ℝ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 0  <  ( 𝐶  +  1 )  →  ( 𝐵  /  ( 𝐶  +  1 ) )  ∈  ℝ ) | 
						
							| 19 |  | ltmul1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  /  ( 𝐶  +  1 ) )  ∈  ℝ  ∧  ( ( 𝐶  +  1 )  ∈  ℝ  ∧  0  <  ( 𝐶  +  1 ) ) )  →  ( 𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) )  ↔  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) ) ) ) | 
						
							| 20 | 1 19 | mp3an1 | ⊢ ( ( ( 𝐵  /  ( 𝐶  +  1 ) )  ∈  ℝ  ∧  ( ( 𝐶  +  1 )  ∈  ℝ  ∧  0  <  ( 𝐶  +  1 ) ) )  →  ( 𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) )  ↔  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) ) ) ) | 
						
							| 21 | 5 20 | mpanr1 | ⊢ ( ( ( 𝐵  /  ( 𝐶  +  1 ) )  ∈  ℝ  ∧  0  <  ( 𝐶  +  1 ) )  →  ( 𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) )  ↔  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) ) ) ) | 
						
							| 22 | 18 21 | mpancom | ⊢ ( 0  <  ( 𝐶  +  1 )  →  ( 𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) )  ↔  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) ) ) ) | 
						
							| 23 | 22 | biimpd | ⊢ ( 0  <  ( 𝐶  +  1 )  →  ( 𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) )  →  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) ) ) ) | 
						
							| 24 | 15 23 | syl | ⊢ ( 0  ≤  𝐶  →  ( 𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) )  →  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 0  ≤  𝐶  ∧  𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) ) )  →  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) ) ) | 
						
							| 26 | 2 | recni | ⊢ 𝐵  ∈  ℂ | 
						
							| 27 | 5 | recni | ⊢ ( 𝐶  +  1 )  ∈  ℂ | 
						
							| 28 | 26 27 | divcan1zi | ⊢ ( ( 𝐶  +  1 )  ≠  0  →  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) )  =  𝐵 ) | 
						
							| 29 | 15 16 28 | 3syl | ⊢ ( 0  ≤  𝐶  →  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) )  =  𝐵 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 0  ≤  𝐶  ∧  𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) ) )  →  ( ( 𝐵  /  ( 𝐶  +  1 ) )  ·  ( 𝐶  +  1 ) )  =  𝐵 ) | 
						
							| 31 | 25 30 | breqtrd | ⊢ ( ( 0  ≤  𝐶  ∧  𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) ) )  →  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  𝐵 ) | 
						
							| 32 | 31 | 3adant1 | ⊢ ( ( 0  ≤  𝐴  ∧  0  ≤  𝐶  ∧  𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) ) )  →  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  𝐵 ) | 
						
							| 33 | 1 3 | remulcli | ⊢ ( 𝐴  ·  𝐶 )  ∈  ℝ | 
						
							| 34 | 1 5 | remulcli | ⊢ ( 𝐴  ·  ( 𝐶  +  1 ) )  ∈  ℝ | 
						
							| 35 | 33 34 2 | lelttri | ⊢ ( ( ( 𝐴  ·  𝐶 )  ≤  ( 𝐴  ·  ( 𝐶  +  1 ) )  ∧  ( 𝐴  ·  ( 𝐶  +  1 ) )  <  𝐵 )  →  ( 𝐴  ·  𝐶 )  <  𝐵 ) | 
						
							| 36 | 12 32 35 | syl2anc | ⊢ ( ( 0  ≤  𝐴  ∧  0  ≤  𝐶  ∧  𝐴  <  ( 𝐵  /  ( 𝐶  +  1 ) ) )  →  ( 𝐴  ·  𝐶 )  <  𝐵 ) |