Metamath Proof Explorer


Theorem ltesubnnd

Description: Subtracting an integer number from another number decreases it. See ltsubrpd . (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ltesubnnd.1 ( 𝜑𝑀 ∈ ℤ )
ltesubnnd.2 ( 𝜑𝑁 ∈ ℕ )
Assertion ltesubnnd ( 𝜑 → ( ( 𝑀 + 1 ) − 𝑁 ) ≤ 𝑀 )

Proof

Step Hyp Ref Expression
1 ltesubnnd.1 ( 𝜑𝑀 ∈ ℤ )
2 ltesubnnd.2 ( 𝜑𝑁 ∈ ℕ )
3 1 zcnd ( 𝜑𝑀 ∈ ℂ )
4 1cnd ( 𝜑 → 1 ∈ ℂ )
5 2 nncnd ( 𝜑𝑁 ∈ ℂ )
6 3 4 5 addsubd ( 𝜑 → ( ( 𝑀 + 1 ) − 𝑁 ) = ( ( 𝑀𝑁 ) + 1 ) )
7 1 zred ( 𝜑𝑀 ∈ ℝ )
8 2 nnrpd ( 𝜑𝑁 ∈ ℝ+ )
9 7 8 ltsubrpd ( 𝜑 → ( 𝑀𝑁 ) < 𝑀 )
10 2 nnzd ( 𝜑𝑁 ∈ ℤ )
11 1 10 zsubcld ( 𝜑 → ( 𝑀𝑁 ) ∈ ℤ )
12 zltp1le ( ( ( 𝑀𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀𝑁 ) < 𝑀 ↔ ( ( 𝑀𝑁 ) + 1 ) ≤ 𝑀 ) )
13 11 1 12 syl2anc ( 𝜑 → ( ( 𝑀𝑁 ) < 𝑀 ↔ ( ( 𝑀𝑁 ) + 1 ) ≤ 𝑀 ) )
14 9 13 mpbid ( 𝜑 → ( ( 𝑀𝑁 ) + 1 ) ≤ 𝑀 )
15 6 14 eqbrtrd ( 𝜑 → ( ( 𝑀 + 1 ) − 𝑁 ) ≤ 𝑀 )