Database REAL AND COMPLEX NUMBERS Elementary integer functions Integer powers ltexp1d  
				
		 
		
			
		 
		Description:   Elevating to a positive power does not affect inequalities.  Similar to
       ltmul1d  for exponentiation of positive reals.  (Contributed by Steven
       Nguyen , 22-Aug-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ltexp1d.1 ⊢  ( 𝜑   →  𝐴   ∈  ℝ+  )  
					
						ltexp1d.2 ⊢  ( 𝜑   →  𝐵   ∈  ℝ+  )  
					
						ltexp1d.3 ⊢  ( 𝜑   →  𝑁   ∈  ℕ )  
				
					Assertion 
					ltexp1d ⊢   ( 𝜑   →  ( 𝐴   <  𝐵   ↔  ( 𝐴  ↑ 𝑁  )  <  ( 𝐵  ↑ 𝑁  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ltexp1d.1 ⊢  ( 𝜑   →  𝐴   ∈  ℝ+  )  
						
							2 
								
							 
							ltexp1d.2 ⊢  ( 𝜑   →  𝐵   ∈  ℝ+  )  
						
							3 
								
							 
							ltexp1d.3 ⊢  ( 𝜑   →  𝑁   ∈  ℕ )  
						
							4 
								
							 
							rpexpmord ⊢  ( ( 𝑁   ∈  ℕ  ∧  𝐴   ∈  ℝ+   ∧  𝐵   ∈  ℝ+  )  →  ( 𝐴   <  𝐵   ↔  ( 𝐴  ↑ 𝑁  )  <  ( 𝐵  ↑ 𝑁  ) ) )  
						
							5 
								3  1  2  4 
							 
							syl3anc ⊢  ( 𝜑   →  ( 𝐴   <  𝐵   ↔  ( 𝐴  ↑ 𝑁  )  <  ( 𝐵  ↑ 𝑁  ) ) )