Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
ltexp1d
Metamath Proof Explorer
Description: Elevating to a positive power does not affect inequalities. Similar to
ltmul1d for exponentiation of positive reals. (Contributed by Steven
Nguyen , 22-Aug-2023)
Ref
Expression
Hypotheses
ltexp1d.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ )
ltexp1d.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ )
ltexp1d.3
⊢ ( 𝜑 → 𝑁 ∈ ℕ )
Assertion
ltexp1d
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) )
Proof
Step
Hyp
Ref
Expression
1
ltexp1d.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ )
2
ltexp1d.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ )
3
ltexp1d.3
⊢ ( 𝜑 → 𝑁 ∈ ℕ )
4
rpexpmord
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) )
5
3 1 2 4
syl3anc
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐵 ↑ 𝑁 ) ) )