Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑀 ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑁 ) ) |
4 |
|
zssre |
⊢ ℤ ⊆ ℝ |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
6 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
7 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
8 |
|
0lt1 |
⊢ 0 < 1 |
9 |
8
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 1 ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
11 |
6 7 5 9 10
|
lttrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
12 |
5 11
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
13 |
|
rpexpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ℝ+ ) |
14 |
12 13
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ℝ+ ) |
15 |
14
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ℝ ) |
16 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝐴 ∈ ℝ ) |
17 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) |
18 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) |
19 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 1 < 𝐴 ) |
20 |
|
ltexp2a |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 1 < 𝐴 ∧ 𝑥 < 𝑦 ) ) → ( 𝐴 ↑ 𝑥 ) < ( 𝐴 ↑ 𝑦 ) ) |
21 |
20
|
expr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑥 < 𝑦 → ( 𝐴 ↑ 𝑥 ) < ( 𝐴 ↑ 𝑦 ) ) ) |
22 |
16 17 18 19 21
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 < 𝑦 → ( 𝐴 ↑ 𝑥 ) < ( 𝐴 ↑ 𝑦 ) ) ) |
23 |
1 2 3 4 15 22
|
ltord1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |
24 |
23
|
ancom2s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |
25 |
24
|
exp43 |
⊢ ( 𝐴 ∈ ℝ → ( 1 < 𝐴 → ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) ) ) ) |
26 |
25
|
com24 |
⊢ ( 𝐴 ∈ ℝ → ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( 1 < 𝐴 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) ) ) ) |
27 |
26
|
3imp1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |