Metamath Proof Explorer


Theorem ltexp2d

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 ( 𝜑𝐴 ∈ ℝ )
ltexp2d.2 ( 𝜑𝑀 ∈ ℤ )
ltexp2d.3 ( 𝜑𝑁 ∈ ℤ )
ltexp2d.4 ( 𝜑 → 1 < 𝐴 )
Assertion ltexp2d ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴𝑀 ) < ( 𝐴𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 resqcld.1 ( 𝜑𝐴 ∈ ℝ )
2 ltexp2d.2 ( 𝜑𝑀 ∈ ℤ )
3 ltexp2d.3 ( 𝜑𝑁 ∈ ℤ )
4 ltexp2d.4 ( 𝜑 → 1 < 𝐴 )
5 ltexp2 ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴𝑀 ) < ( 𝐴𝑁 ) ) )
6 1 2 3 4 5 syl31anc ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴𝑀 ) < ( 𝐴𝑁 ) ) )