Metamath Proof Explorer
Description: Ordering relationship for exponentiation. (Contributed by Mario
Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltexp2d.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
ltexp2d.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
|
ltexp2d.4 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
|
Assertion |
ltexp2d |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
resqcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltexp2d.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
ltexp2d.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
ltexp2d.4 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
5 |
|
ltexp2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |
6 |
1 2 3 4 5
|
syl31anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝐴 ↑ 𝑁 ) ) ) |