Metamath Proof Explorer


Theorem ltexp2rd

Description: The power of a positive number smaller than 1 decreases as its exponent increases. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
rpexpcld.2 ( 𝜑𝑁 ∈ ℤ )
ltexp2rd.3 ( 𝜑𝑀 ∈ ℤ )
ltexp2rd.4 ( 𝜑𝐴 < 1 )
Assertion ltexp2rd ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴𝑁 ) < ( 𝐴𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 rpexpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpexpcld.2 ( 𝜑𝑁 ∈ ℤ )
3 ltexp2rd.3 ( 𝜑𝑀 ∈ ℤ )
4 ltexp2rd.4 ( 𝜑𝐴 < 1 )
5 ltexp2r ( ( ( 𝐴 ∈ ℝ+𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴𝑁 ) < ( 𝐴𝑀 ) ) )
6 1 3 2 4 5 syl31anc ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴𝑁 ) < ( 𝐴𝑀 ) ) )