Metamath Proof Explorer
Description: The power of a positive number smaller than 1 decreases as its exponent
increases. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
|
|
rpexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
|
ltexp2rd.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
ltexp2rd.4 |
⊢ ( 𝜑 → 𝐴 < 1 ) |
|
Assertion |
ltexp2rd |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
rpexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
ltexp2rd.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
ltexp2rd.4 |
⊢ ( 𝜑 → 𝐴 < 1 ) |
5 |
|
ltexp2r |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐴 < 1 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |
6 |
1 3 2 4 5
|
syl31anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝐴 ↑ 𝑁 ) < ( 𝐴 ↑ 𝑀 ) ) ) |