Metamath Proof Explorer
		
		
		
		Description:  The power of a positive number smaller than 1 decreases as its exponent
       increases.  (Contributed by Mario Carneiro, 28-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rpexpcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
					
						|  |  | rpexpcld.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
					
						|  |  | ltexp2rd.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
					
						|  |  | ltexp2rd.4 | ⊢ ( 𝜑  →  𝐴  <  1 ) | 
				
					|  | Assertion | ltexp2rd | ⊢  ( 𝜑  →  ( 𝑀  <  𝑁  ↔  ( 𝐴 ↑ 𝑁 )  <  ( 𝐴 ↑ 𝑀 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpexpcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | rpexpcld.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | ltexp2rd.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | ltexp2rd.4 | ⊢ ( 𝜑  →  𝐴  <  1 ) | 
						
							| 5 |  | ltexp2r | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐴  <  1 )  →  ( 𝑀  <  𝑁  ↔  ( 𝐴 ↑ 𝑁 )  <  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 6 | 1 3 2 4 5 | syl31anc | ⊢ ( 𝜑  →  ( 𝑀  <  𝑁  ↔  ( 𝐴 ↑ 𝑁 )  <  ( 𝐴 ↑ 𝑀 ) ) ) |