| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pinn | ⊢ ( 𝐴  ∈  N  →  𝐴  ∈  ω ) | 
						
							| 2 |  | pinn | ⊢ ( 𝐵  ∈  N  →  𝐵  ∈  ω ) | 
						
							| 3 |  | nnaordex | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 5 |  | ltpiord | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  <N  𝐵  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 6 |  | addpiord | ⊢ ( ( 𝐴  ∈  N  ∧  𝑥  ∈  N )  →  ( 𝐴  +N  𝑥 )  =  ( 𝐴  +o  𝑥 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝐴  ∈  N  ∧  𝑥  ∈  N )  →  ( ( 𝐴  +N  𝑥 )  =  𝐵  ↔  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) | 
						
							| 8 | 7 | pm5.32da | ⊢ ( 𝐴  ∈  N  →  ( ( 𝑥  ∈  N  ∧  ( 𝐴  +N  𝑥 )  =  𝐵 )  ↔  ( 𝑥  ∈  N  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 9 |  | elni2 | ⊢ ( 𝑥  ∈  N  ↔  ( 𝑥  ∈  ω  ∧  ∅  ∈  𝑥 ) ) | 
						
							| 10 | 9 | anbi1i | ⊢ ( ( 𝑥  ∈  N  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 )  ↔  ( ( 𝑥  ∈  ω  ∧  ∅  ∈  𝑥 )  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) | 
						
							| 11 |  | anass | ⊢ ( ( ( 𝑥  ∈  ω  ∧  ∅  ∈  𝑥 )  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 )  ↔  ( 𝑥  ∈  ω  ∧  ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 12 | 10 11 | bitri | ⊢ ( ( 𝑥  ∈  N  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 )  ↔  ( 𝑥  ∈  ω  ∧  ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 13 | 8 12 | bitrdi | ⊢ ( 𝐴  ∈  N  →  ( ( 𝑥  ∈  N  ∧  ( 𝐴  +N  𝑥 )  =  𝐵 )  ↔  ( 𝑥  ∈  ω  ∧  ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) ) | 
						
							| 14 | 13 | rexbidv2 | ⊢ ( 𝐴  ∈  N  →  ( ∃ 𝑥  ∈  N ( 𝐴  +N  𝑥 )  =  𝐵  ↔  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( ∃ 𝑥  ∈  N ( 𝐴  +N  𝑥 )  =  𝐵  ↔  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 16 | 4 5 15 | 3bitr4d | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  <N  𝐵  ↔  ∃ 𝑥  ∈  N ( 𝐴  +N  𝑥 )  =  𝐵 ) ) |