Step |
Hyp |
Ref |
Expression |
1 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
2 |
|
pinn |
⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) |
3 |
|
nnaordex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
5 |
|
ltpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
6 |
|
addpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝑥 ∈ N ) → ( 𝐴 +N 𝑥 ) = ( 𝐴 +o 𝑥 ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝐴 ∈ N ∧ 𝑥 ∈ N ) → ( ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
8 |
7
|
pm5.32da |
⊢ ( 𝐴 ∈ N → ( ( 𝑥 ∈ N ∧ ( 𝐴 +N 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
9 |
|
elni2 |
⊢ ( 𝑥 ∈ N ↔ ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ) |
10 |
9
|
anbi1i |
⊢ ( ( 𝑥 ∈ N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
11 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
12 |
10 11
|
bitri |
⊢ ( ( 𝑥 ∈ N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
13 |
8 12
|
bitrdi |
⊢ ( 𝐴 ∈ N → ( ( 𝑥 ∈ N ∧ ( 𝐴 +N 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
14 |
13
|
rexbidv2 |
⊢ ( 𝐴 ∈ N → ( ∃ 𝑥 ∈ N ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ∃ 𝑥 ∈ N ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
16 |
4 5 15
|
3bitr4d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ ∃ 𝑥 ∈ N ( 𝐴 +N 𝑥 ) = 𝐵 ) ) |