Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelpr |
⊢ <P ⊆ ( P × P ) |
2 |
1
|
brel |
⊢ ( 𝐴 <P 𝐵 → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) |
3 |
|
ltprord |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 +Q 𝑦 ) = ( 𝑤 +Q 𝑧 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ↔ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) ↔ ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
7 |
6
|
exbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) ↔ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
8 |
7
|
cbvabv |
⊢ { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) } |
9 |
8
|
ltexprlem5 |
⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P ) |
11 |
8
|
ltexprlem6 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) ⊆ 𝐵 ) |
12 |
8
|
ltexprlem7 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) ) |
13 |
11 12
|
eqssd |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } → ( 𝐴 +P 𝑥 ) = ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } → ( ( 𝐴 +P 𝑥 ) = 𝐵 ↔ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) ) |
16 |
15
|
rspcev |
⊢ ( ( { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P ∧ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |
17 |
10 13 16
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |
18 |
17
|
ex |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) ) |
19 |
3 18
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) ) |
20 |
2 19
|
mpcom |
⊢ ( 𝐴 <P 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |