Step |
Hyp |
Ref |
Expression |
1 |
|
ltexprlem.1 |
⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } |
2 |
|
pssnel |
⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
3 |
|
prnmadd |
⊢ ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) |
4 |
3
|
anim2i |
⊢ ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
5 |
|
19.42v |
⊢ ( ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
6 |
4 5
|
sylibr |
⊢ ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
7 |
6
|
exp32 |
⊢ ( ¬ 𝑦 ∈ 𝐴 → ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
8 |
7
|
com3l |
⊢ ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ( ¬ 𝑦 ∈ 𝐴 → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
9 |
8
|
impd |
⊢ ( 𝐵 ∈ P → ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) |
10 |
9
|
eximdv |
⊢ ( 𝐵 ∈ P → ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴 ) → ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) |
11 |
2 10
|
syl5 |
⊢ ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) |
12 |
1
|
abeq2i |
⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐶 ↔ ∃ 𝑥 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
14 |
|
n0 |
⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐶 ) |
15 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
16 |
13 14 15
|
3bitr4i |
⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
17 |
11 16
|
syl6ibr |
⊢ ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅ ) ) |