Metamath Proof Explorer


Theorem ltexprlem1

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 3-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) }
Assertion ltexprlem1 ( 𝐵P → ( 𝐴𝐵𝐶 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 ltexprlem.1 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) }
2 pssnel ( 𝐴𝐵 → ∃ 𝑦 ( 𝑦𝐵 ∧ ¬ 𝑦𝐴 ) )
3 prnmadd ( ( 𝐵P𝑦𝐵 ) → ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 )
4 3 anim2i ( ( ¬ 𝑦𝐴 ∧ ( 𝐵P𝑦𝐵 ) ) → ( ¬ 𝑦𝐴 ∧ ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
5 19.42v ( ∃ 𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ 𝑦𝐴 ∧ ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
6 4 5 sylibr ( ( ¬ 𝑦𝐴 ∧ ( 𝐵P𝑦𝐵 ) ) → ∃ 𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
7 6 exp32 ( ¬ 𝑦𝐴 → ( 𝐵P → ( 𝑦𝐵 → ∃ 𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) )
8 7 com3l ( 𝐵P → ( 𝑦𝐵 → ( ¬ 𝑦𝐴 → ∃ 𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) )
9 8 impd ( 𝐵P → ( ( 𝑦𝐵 ∧ ¬ 𝑦𝐴 ) → ∃ 𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) )
10 9 eximdv ( 𝐵P → ( ∃ 𝑦 ( 𝑦𝐵 ∧ ¬ 𝑦𝐴 ) → ∃ 𝑦𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) )
11 2 10 syl5 ( 𝐵P → ( 𝐴𝐵 → ∃ 𝑦𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) )
12 1 abeq2i ( 𝑥𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
13 12 exbii ( ∃ 𝑥 𝑥𝐶 ↔ ∃ 𝑥𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
14 n0 ( 𝐶 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐶 )
15 excom ( ∃ 𝑦𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ∃ 𝑥𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
16 13 14 15 3bitr4i ( 𝐶 ≠ ∅ ↔ ∃ 𝑦𝑥 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
17 11 16 syl6ibr ( 𝐵P → ( 𝐴𝐵𝐶 ≠ ∅ ) )