| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltexprlem.1 | ⊢ 𝐶  =  { 𝑥  ∣  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) } | 
						
							| 2 | 1 | eqabri | ⊢ ( 𝑥  ∈  𝐶  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) ) | 
						
							| 3 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( 𝑦  +Q  𝑥 )  ∈  Q ) | 
						
							| 4 |  | addnqf | ⊢  +Q  : ( Q  ×  Q ) ⟶ Q | 
						
							| 5 | 4 | fdmi | ⊢ dom   +Q   =  ( Q  ×  Q ) | 
						
							| 6 |  | 0nnq | ⊢ ¬  ∅  ∈  Q | 
						
							| 7 | 5 6 | ndmovrcl | ⊢ ( ( 𝑦  +Q  𝑥 )  ∈  Q  →  ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q ) ) | 
						
							| 8 | 3 7 | syl | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q ) ) | 
						
							| 9 |  | ltaddnq | ⊢ ( ( 𝑥  ∈  Q  ∧  𝑦  ∈  Q )  →  𝑥  <Q  ( 𝑥  +Q  𝑦 ) ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q )  →  𝑥  <Q  ( 𝑥  +Q  𝑦 ) ) | 
						
							| 11 |  | addcomnq | ⊢ ( 𝑥  +Q  𝑦 )  =  ( 𝑦  +Q  𝑥 ) | 
						
							| 12 | 10 11 | breqtrdi | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q )  →  𝑥  <Q  ( 𝑦  +Q  𝑥 ) ) | 
						
							| 13 |  | prcdnq | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( 𝑥  <Q  ( 𝑦  +Q  𝑥 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 14 | 12 13 | syl5 | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 15 | 8 14 | mpd | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝐵  ∈  P  →  ( ( 𝑦  +Q  𝑥 )  ∈  𝐵  →  𝑥  ∈  𝐵 ) ) | 
						
							| 17 | 16 | adantld | ⊢ ( 𝐵  ∈  P  →  ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 18 | 17 | exlimdv | ⊢ ( 𝐵  ∈  P  →  ( ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 19 | 2 18 | biimtrid | ⊢ ( 𝐵  ∈  P  →  ( 𝑥  ∈  𝐶  →  𝑥  ∈  𝐵 ) ) | 
						
							| 20 | 19 | ssrdv | ⊢ ( 𝐵  ∈  P  →  𝐶  ⊆  𝐵 ) | 
						
							| 21 |  | prpssnq | ⊢ ( 𝐵  ∈  P  →  𝐵  ⊊  Q ) | 
						
							| 22 | 20 21 | sspsstrd | ⊢ ( 𝐵  ∈  P  →  𝐶  ⊊  Q ) |