Step |
Hyp |
Ref |
Expression |
1 |
|
ltexprlem.1 |
⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } |
2 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q ) |
3 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
4 |
3
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
5 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
6 |
4 5
|
ndmovrcl |
⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
7 |
6
|
simpld |
⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → 𝑦 ∈ Q ) |
8 |
|
ltanq |
⊢ ( 𝑦 ∈ Q → ( 𝑧 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑦 +Q 𝑥 ) ) ) |
9 |
2 7 8
|
3syl |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑧 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑦 +Q 𝑥 ) ) ) |
10 |
|
prcdnq |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑦 +Q 𝑥 ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
11 |
9 10
|
sylbid |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑧 <Q 𝑥 → ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
12 |
11
|
impancom |
⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
13 |
12
|
anim2d |
⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
14 |
13
|
eximdv |
⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
15 |
1
|
abeq2i |
⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
16 |
|
vex |
⊢ 𝑧 ∈ V |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 +Q 𝑥 ) = ( 𝑦 +Q 𝑧 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ↔ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
20 |
19
|
exbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
21 |
16 20 1
|
elab2 |
⊢ ( 𝑧 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
22 |
14 15 21
|
3imtr4g |
⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( 𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶 ) ) |
23 |
22
|
ex |
⊢ ( 𝐵 ∈ P → ( 𝑧 <Q 𝑥 → ( 𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶 ) ) ) |
24 |
23
|
com23 |
⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ) ) |
25 |
24
|
alrimdv |
⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ) ) |