| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltexprlem.1 | ⊢ 𝐶  =  { 𝑥  ∣  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) } | 
						
							| 2 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( 𝑦  +Q  𝑥 )  ∈  Q ) | 
						
							| 3 |  | addnqf | ⊢  +Q  : ( Q  ×  Q ) ⟶ Q | 
						
							| 4 | 3 | fdmi | ⊢ dom   +Q   =  ( Q  ×  Q ) | 
						
							| 5 |  | 0nnq | ⊢ ¬  ∅  ∈  Q | 
						
							| 6 | 4 5 | ndmovrcl | ⊢ ( ( 𝑦  +Q  𝑥 )  ∈  Q  →  ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( ( 𝑦  +Q  𝑥 )  ∈  Q  →  𝑦  ∈  Q ) | 
						
							| 8 |  | ltanq | ⊢ ( 𝑦  ∈  Q  →  ( 𝑧  <Q  𝑥  ↔  ( 𝑦  +Q  𝑧 )  <Q  ( 𝑦  +Q  𝑥 ) ) ) | 
						
							| 9 | 2 7 8 | 3syl | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( 𝑧  <Q  𝑥  ↔  ( 𝑦  +Q  𝑧 )  <Q  ( 𝑦  +Q  𝑥 ) ) ) | 
						
							| 10 |  | prcdnq | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( ( 𝑦  +Q  𝑧 )  <Q  ( 𝑦  +Q  𝑥 )  →  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 11 | 9 10 | sylbid | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( 𝑧  <Q  𝑥  →  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 12 | 11 | impancom | ⊢ ( ( 𝐵  ∈  P  ∧  𝑧  <Q  𝑥 )  →  ( ( 𝑦  +Q  𝑥 )  ∈  𝐵  →  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 13 | 12 | anim2d | ⊢ ( ( 𝐵  ∈  P  ∧  𝑧  <Q  𝑥 )  →  ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 14 | 13 | eximdv | ⊢ ( ( 𝐵  ∈  P  ∧  𝑧  <Q  𝑥 )  →  ( ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 15 | 1 | eqabri | ⊢ ( 𝑥  ∈  𝐶  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) ) | 
						
							| 16 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  +Q  𝑥 )  =  ( 𝑦  +Q  𝑧 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑦  +Q  𝑥 )  ∈  𝐵  ↔  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  ↔  ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 20 | 19 | exbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 21 | 16 20 1 | elab2 | ⊢ ( 𝑧  ∈  𝐶  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 22 | 14 15 21 | 3imtr4g | ⊢ ( ( 𝐵  ∈  P  ∧  𝑧  <Q  𝑥 )  →  ( 𝑥  ∈  𝐶  →  𝑧  ∈  𝐶 ) ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝐵  ∈  P  →  ( 𝑧  <Q  𝑥  →  ( 𝑥  ∈  𝐶  →  𝑧  ∈  𝐶 ) ) ) | 
						
							| 24 | 23 | com23 | ⊢ ( 𝐵  ∈  P  →  ( 𝑥  ∈  𝐶  →  ( 𝑧  <Q  𝑥  →  𝑧  ∈  𝐶 ) ) ) | 
						
							| 25 | 24 | alrimdv | ⊢ ( 𝐵  ∈  P  →  ( 𝑥  ∈  𝐶  →  ∀ 𝑧 ( 𝑧  <Q  𝑥  →  𝑧  ∈  𝐶 ) ) ) |