| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltexprlem.1 | ⊢ 𝐶  =  { 𝑥  ∣  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) } | 
						
							| 2 |  | prnmax | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ∃ 𝑤  ∈  𝐵 ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) | 
						
							| 3 |  | df-rex | ⊢ ( ∃ 𝑤  ∈  𝐵 ( 𝑦  +Q  𝑥 )  <Q  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) | 
						
							| 5 |  | ltrelnq | ⊢  <Q   ⊆  ( Q  ×  Q ) | 
						
							| 6 | 5 | brel | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  →  ( ( 𝑦  +Q  𝑥 )  ∈  Q  ∧  𝑤  ∈  Q ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  →  ( 𝑦  +Q  𝑥 )  ∈  Q ) | 
						
							| 8 |  | addnqf | ⊢  +Q  : ( Q  ×  Q ) ⟶ Q | 
						
							| 9 | 8 | fdmi | ⊢ dom   +Q   =  ( Q  ×  Q ) | 
						
							| 10 |  | 0nnq | ⊢ ¬  ∅  ∈  Q | 
						
							| 11 | 9 10 | ndmovrcl | ⊢ ( ( 𝑦  +Q  𝑥 )  ∈  Q  →  ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q ) ) | 
						
							| 12 | 7 11 | syl | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  →  ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q ) ) | 
						
							| 13 |  | ltaddnq | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q )  →  𝑦  <Q  ( 𝑦  +Q  𝑥 ) ) | 
						
							| 14 |  | ltsonq | ⊢  <Q   Or  Q | 
						
							| 15 | 14 5 | sotri | ⊢ ( ( 𝑦  <Q  ( 𝑦  +Q  𝑥 )  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  →  𝑦  <Q  𝑤 ) | 
						
							| 16 | 13 15 | sylan | ⊢ ( ( ( 𝑦  ∈  Q  ∧  𝑥  ∈  Q )  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  →  𝑦  <Q  𝑤 ) | 
						
							| 17 | 12 16 | mpancom | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  →  𝑦  <Q  𝑤 ) | 
						
							| 18 | 5 | brel | ⊢ ( 𝑦  <Q  𝑤  →  ( 𝑦  ∈  Q  ∧  𝑤  ∈  Q ) ) | 
						
							| 19 | 18 | simprd | ⊢ ( 𝑦  <Q  𝑤  →  𝑤  ∈  Q ) | 
						
							| 20 |  | ltexnq | ⊢ ( 𝑤  ∈  Q  →  ( 𝑦  <Q  𝑤  ↔  ∃ 𝑧 ( 𝑦  +Q  𝑧 )  =  𝑤 ) ) | 
						
							| 21 | 20 | biimpd | ⊢ ( 𝑤  ∈  Q  →  ( 𝑦  <Q  𝑤  →  ∃ 𝑧 ( 𝑦  +Q  𝑧 )  =  𝑤 ) ) | 
						
							| 22 | 19 21 | mpcom | ⊢ ( 𝑦  <Q  𝑤  →  ∃ 𝑧 ( 𝑦  +Q  𝑧 )  =  𝑤 ) | 
						
							| 23 | 17 22 | syl | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  →  ∃ 𝑧 ( 𝑦  +Q  𝑧 )  =  𝑤 ) | 
						
							| 24 |  | eqcom | ⊢ ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ↔  ( 𝑦  +Q  𝑧 )  =  𝑤 ) | 
						
							| 25 | 24 | exbii | ⊢ ( ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 )  ↔  ∃ 𝑧 ( 𝑦  +Q  𝑧 )  =  𝑤 ) | 
						
							| 26 | 23 25 | sylibr | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  →  ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 ) ) | 
						
							| 27 | 26 | ancri | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  →  ( ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) | 
						
							| 28 | 27 | anim2i | ⊢ ( ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  →  ( 𝑤  ∈  𝐵  ∧  ( ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 29 |  | an12 | ⊢ ( ( ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) )  ↔  ( 𝑤  ∈  𝐵  ∧  ( ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 30 | 28 29 | sylibr | ⊢ ( ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  →  ( ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 31 |  | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) )  ↔  ( ∃ 𝑧 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 32 | 30 31 | sylibr | ⊢ ( ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  →  ∃ 𝑧 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 33 | 32 | eximi | ⊢ ( ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  →  ∃ 𝑤 ∃ 𝑧 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 34 |  | excom | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) )  ↔  ∃ 𝑤 ∃ 𝑧 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 35 | 33 34 | sylibr | ⊢ ( ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  →  ∃ 𝑧 ∃ 𝑤 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) ) ) | 
						
							| 36 |  | ovex | ⊢ ( 𝑦  +Q  𝑧 )  ∈  V | 
						
							| 37 |  | eleq1 | ⊢ ( 𝑤  =  ( 𝑦  +Q  𝑧 )  →  ( 𝑤  ∈  𝐵  ↔  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 38 |  | breq2 | ⊢ ( 𝑤  =  ( 𝑦  +Q  𝑧 )  →  ( ( 𝑦  +Q  𝑥 )  <Q  𝑤  ↔  ( 𝑦  +Q  𝑥 )  <Q  ( 𝑦  +Q  𝑧 ) ) ) | 
						
							| 39 | 37 38 | anbi12d | ⊢ ( 𝑤  =  ( 𝑦  +Q  𝑧 )  →  ( ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 )  ↔  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  ( 𝑦  +Q  𝑧 ) ) ) ) | 
						
							| 40 | 36 39 | ceqsexv | ⊢ ( ∃ 𝑤 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) )  ↔  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  ( 𝑦  +Q  𝑧 ) ) ) | 
						
							| 41 |  | ltanq | ⊢ ( 𝑦  ∈  Q  →  ( 𝑥  <Q  𝑧  ↔  ( 𝑦  +Q  𝑥 )  <Q  ( 𝑦  +Q  𝑧 ) ) ) | 
						
							| 42 | 9 5 10 41 | ndmovordi | ⊢ ( ( 𝑦  +Q  𝑥 )  <Q  ( 𝑦  +Q  𝑧 )  →  𝑥  <Q  𝑧 ) | 
						
							| 43 | 42 | anim2i | ⊢ ( ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  ( 𝑦  +Q  𝑧 ) )  →  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) | 
						
							| 44 | 40 43 | sylbi | ⊢ ( ∃ 𝑤 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) )  →  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) | 
						
							| 45 | 44 | eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑤  =  ( 𝑦  +Q  𝑧 )  ∧  ( 𝑤  ∈  𝐵  ∧  ( 𝑦  +Q  𝑥 )  <Q  𝑤 ) )  →  ∃ 𝑧 ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) | 
						
							| 46 | 4 35 45 | 3syl | ⊢ ( ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ∃ 𝑧 ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) | 
						
							| 47 | 46 | anim2i | ⊢ ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝐵  ∈  P  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) )  →  ( ¬  𝑦  ∈  𝐴  ∧  ∃ 𝑧 ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 48 | 47 | an12s | ⊢ ( ( 𝐵  ∈  P  ∧  ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) )  →  ( ¬  𝑦  ∈  𝐴  ∧  ∃ 𝑧 ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 49 |  | 19.42v | ⊢ ( ∃ 𝑧 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) )  ↔  ( ¬  𝑦  ∈  𝐴  ∧  ∃ 𝑧 ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 50 | 48 49 | sylibr | ⊢ ( ( 𝐵  ∈  P  ∧  ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) )  →  ∃ 𝑧 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 51 | 50 | ex | ⊢ ( 𝐵  ∈  P  →  ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ∃ 𝑧 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) ) | 
						
							| 52 | 51 | eximdv | ⊢ ( 𝐵  ∈  P  →  ( ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  →  ∃ 𝑦 ∃ 𝑧 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) ) | 
						
							| 53 | 1 | eqabri | ⊢ ( 𝑥  ∈  𝐶  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 ) ) | 
						
							| 54 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 55 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  +Q  𝑥 )  =  ( 𝑦  +Q  𝑧 ) ) | 
						
							| 56 | 55 | eleq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑦  +Q  𝑥 )  ∈  𝐵  ↔  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 57 | 56 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  ↔  ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 58 | 57 | exbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑥 )  ∈  𝐵 )  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) ) | 
						
							| 59 | 54 58 1 | elab2 | ⊢ ( 𝑧  ∈  𝐶  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 ) ) | 
						
							| 60 | 59 | anbi1i | ⊢ ( ( 𝑧  ∈  𝐶  ∧  𝑥  <Q  𝑧 )  ↔  ( ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 )  ∧  𝑥  <Q  𝑧 ) ) | 
						
							| 61 |  | 19.41v | ⊢ ( ∃ 𝑦 ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 )  ∧  𝑥  <Q  𝑧 )  ↔  ( ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 )  ∧  𝑥  <Q  𝑧 ) ) | 
						
							| 62 |  | anass | ⊢ ( ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 )  ∧  𝑥  <Q  𝑧 )  ↔  ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 63 | 62 | exbii | ⊢ ( ∃ 𝑦 ( ( ¬  𝑦  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  𝐵 )  ∧  𝑥  <Q  𝑧 )  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 64 | 60 61 63 | 3bitr2i | ⊢ ( ( 𝑧  ∈  𝐶  ∧  𝑥  <Q  𝑧 )  ↔  ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 65 | 64 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧  ∈  𝐶  ∧  𝑥  <Q  𝑧 )  ↔  ∃ 𝑧 ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 66 |  | excom | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) )  ↔  ∃ 𝑧 ∃ 𝑦 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 67 | 65 66 | bitr4i | ⊢ ( ∃ 𝑧 ( 𝑧  ∈  𝐶  ∧  𝑥  <Q  𝑧 )  ↔  ∃ 𝑦 ∃ 𝑧 ( ¬  𝑦  ∈  𝐴  ∧  ( ( 𝑦  +Q  𝑧 )  ∈  𝐵  ∧  𝑥  <Q  𝑧 ) ) ) | 
						
							| 68 | 52 53 67 | 3imtr4g | ⊢ ( 𝐵  ∈  P  →  ( 𝑥  ∈  𝐶  →  ∃ 𝑧 ( 𝑧  ∈  𝐶  ∧  𝑥  <Q  𝑧 ) ) ) |