Metamath Proof Explorer


Theorem ltexprlem6

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) }
Assertion ltexprlem6 ( ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 ltexprlem.1 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) }
2 1 ltexprlem5 ( ( 𝐵P𝐴𝐵 ) → 𝐶P )
3 df-plp +P = ( 𝑧P , 𝑦P ↦ { 𝑓 ∣ ∃ 𝑔𝑧𝑦 𝑓 = ( 𝑔 +Q ) } )
4 addclnq ( ( 𝑔QQ ) → ( 𝑔 +Q ) ∈ Q )
5 3 4 genpelv ( ( 𝐴P𝐶P ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) ↔ ∃ 𝑤𝐴𝑥𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) ) )
6 2 5 sylan2 ( ( 𝐴P ∧ ( 𝐵P𝐴𝐵 ) ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) ↔ ∃ 𝑤𝐴𝑥𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) ) )
7 1 abeq2i ( 𝑥𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) )
8 elprnq ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q )
9 addnqf +Q : ( Q × Q ) ⟶ Q
10 9 fdmi dom +Q = ( Q × Q )
11 0nnq ¬ ∅ ∈ Q
12 10 11 ndmovrcl ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦Q𝑥Q ) )
13 12 simpld ( ( 𝑦 +Q 𝑥 ) ∈ Q𝑦Q )
14 8 13 syl ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑦Q )
15 prub ( ( ( 𝐴P𝑤𝐴 ) ∧ 𝑦Q ) → ( ¬ 𝑦𝐴𝑤 <Q 𝑦 ) )
16 14 15 sylan2 ( ( ( 𝐴P𝑤𝐴 ) ∧ ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦𝐴𝑤 <Q 𝑦 ) )
17 12 simprd ( ( 𝑦 +Q 𝑥 ) ∈ Q𝑥Q )
18 vex 𝑤 ∈ V
19 vex 𝑦 ∈ V
20 ltanq ( 𝑢Q → ( 𝑧 <Q 𝑣 ↔ ( 𝑢 +Q 𝑧 ) <Q ( 𝑢 +Q 𝑣 ) ) )
21 vex 𝑥 ∈ V
22 addcomnq ( 𝑧 +Q 𝑣 ) = ( 𝑣 +Q 𝑧 )
23 18 19 20 21 22 caovord2 ( 𝑥Q → ( 𝑤 <Q 𝑦 ↔ ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) ) )
24 8 17 23 3syl ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 <Q 𝑦 ↔ ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) ) )
25 prcdnq ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
26 24 25 sylbid ( ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 <Q 𝑦 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
27 26 adantl ( ( ( 𝐴P𝑤𝐴 ) ∧ ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( 𝑤 <Q 𝑦 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
28 16 27 syld ( ( ( 𝐴P𝑤𝐴 ) ∧ ( 𝐵P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦𝐴 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
29 28 exp32 ( ( 𝐴P𝑤𝐴 ) → ( 𝐵P → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( ¬ 𝑦𝐴 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) )
30 29 com34 ( ( 𝐴P𝑤𝐴 ) → ( 𝐵P → ( ¬ 𝑦𝐴 → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) )
31 30 imp4b ( ( ( 𝐴P𝑤𝐴 ) ∧ 𝐵P ) → ( ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
32 31 exlimdv ( ( ( 𝐴P𝑤𝐴 ) ∧ 𝐵P ) → ( ∃ 𝑦 ( ¬ 𝑦𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
33 7 32 syl5bi ( ( ( 𝐴P𝑤𝐴 ) ∧ 𝐵P ) → ( 𝑥𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
34 33 exp31 ( 𝐴P → ( 𝑤𝐴 → ( 𝐵P → ( 𝑥𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) )
35 34 com23 ( 𝐴P → ( 𝐵P → ( 𝑤𝐴 → ( 𝑥𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) )
36 35 imp43 ( ( ( 𝐴P𝐵P ) ∧ ( 𝑤𝐴𝑥𝐶 ) ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 )
37 eleq1 ( 𝑧 = ( 𝑤 +Q 𝑥 ) → ( 𝑧𝐵 ↔ ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) )
38 37 biimparc ( ( ( 𝑤 +Q 𝑥 ) ∈ 𝐵𝑧 = ( 𝑤 +Q 𝑥 ) ) → 𝑧𝐵 )
39 36 38 sylan ( ( ( ( 𝐴P𝐵P ) ∧ ( 𝑤𝐴𝑥𝐶 ) ) ∧ 𝑧 = ( 𝑤 +Q 𝑥 ) ) → 𝑧𝐵 )
40 39 exp31 ( ( 𝐴P𝐵P ) → ( ( 𝑤𝐴𝑥𝐶 ) → ( 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧𝐵 ) ) )
41 40 rexlimdvv ( ( 𝐴P𝐵P ) → ( ∃ 𝑤𝐴𝑥𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧𝐵 ) )
42 41 adantrr ( ( 𝐴P ∧ ( 𝐵P𝐴𝐵 ) ) → ( ∃ 𝑤𝐴𝑥𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧𝐵 ) )
43 6 42 sylbid ( ( 𝐴P ∧ ( 𝐵P𝐴𝐵 ) ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) → 𝑧𝐵 ) )
44 43 ssrdv ( ( 𝐴P ∧ ( 𝐵P𝐴𝐵 ) ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 )
45 44 anassrs ( ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 )