Step |
Hyp |
Ref |
Expression |
1 |
|
ltexprlem.1 |
⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } |
2 |
1
|
ltexprlem5 |
⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → 𝐶 ∈ P ) |
3 |
|
df-plp |
⊢ +P = ( 𝑧 ∈ P , 𝑦 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑧 ∃ ℎ ∈ 𝑦 𝑓 = ( 𝑔 +Q ℎ ) } ) |
4 |
|
addclnq |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) |
5 |
3 4
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) ) ) |
6 |
2 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) ) ) |
7 |
1
|
abeq2i |
⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
8 |
|
elprnq |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q ) |
9 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
10 |
9
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
11 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
12 |
10 11
|
ndmovrcl |
⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
13 |
12
|
simpld |
⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → 𝑦 ∈ Q ) |
14 |
8 13
|
syl |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑦 ∈ Q ) |
15 |
|
prub |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ Q ) → ( ¬ 𝑦 ∈ 𝐴 → 𝑤 <Q 𝑦 ) ) |
16 |
14 15
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 → 𝑤 <Q 𝑦 ) ) |
17 |
12
|
simprd |
⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → 𝑥 ∈ Q ) |
18 |
|
vex |
⊢ 𝑤 ∈ V |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
|
ltanq |
⊢ ( 𝑢 ∈ Q → ( 𝑧 <Q 𝑣 ↔ ( 𝑢 +Q 𝑧 ) <Q ( 𝑢 +Q 𝑣 ) ) ) |
21 |
|
vex |
⊢ 𝑥 ∈ V |
22 |
|
addcomnq |
⊢ ( 𝑧 +Q 𝑣 ) = ( 𝑣 +Q 𝑧 ) |
23 |
18 19 20 21 22
|
caovord2 |
⊢ ( 𝑥 ∈ Q → ( 𝑤 <Q 𝑦 ↔ ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) ) ) |
24 |
8 17 23
|
3syl |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 <Q 𝑦 ↔ ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) ) ) |
25 |
|
prcdnq |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑤 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑥 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
26 |
24 25
|
sylbid |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 <Q 𝑦 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( 𝑤 <Q 𝑦 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
28 |
16 27
|
syld |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
29 |
28
|
exp32 |
⊢ ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 ∈ P → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( ¬ 𝑦 ∈ 𝐴 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
30 |
29
|
com34 |
⊢ ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 ∈ P → ( ¬ 𝑦 ∈ 𝐴 → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
31 |
30
|
imp4b |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝐵 ∈ P ) → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
32 |
31
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝐵 ∈ P ) → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
33 |
7 32
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 ∈ 𝐴 ) ∧ 𝐵 ∈ P ) → ( 𝑥 ∈ 𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
34 |
33
|
exp31 |
⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ 𝐴 → ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
35 |
34
|
com23 |
⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝑤 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
36 |
35
|
imp43 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) → ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) |
37 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑤 +Q 𝑥 ) → ( 𝑧 ∈ 𝐵 ↔ ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ) ) |
38 |
37
|
biimparc |
⊢ ( ( ( 𝑤 +Q 𝑥 ) ∈ 𝐵 ∧ 𝑧 = ( 𝑤 +Q 𝑥 ) ) → 𝑧 ∈ 𝐵 ) |
39 |
36 38
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ∧ 𝑧 = ( 𝑤 +Q 𝑥 ) ) → 𝑧 ∈ 𝐵 ) |
40 |
39
|
exp31 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑤 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧 ∈ 𝐵 ) ) ) |
41 |
40
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧 ∈ 𝐵 ) ) |
42 |
41
|
adantrr |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑥 ∈ 𝐶 𝑧 = ( 𝑤 +Q 𝑥 ) → 𝑧 ∈ 𝐵 ) ) |
43 |
6 42
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( 𝑧 ∈ ( 𝐴 +P 𝐶 ) → 𝑧 ∈ 𝐵 ) ) |
44 |
43
|
ssrdv |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 ) |
45 |
44
|
anassrs |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 +P 𝐶 ) ⊆ 𝐵 ) |