Metamath Proof Explorer


Theorem ltle

Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999)

Ref Expression
Assertion ltle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 orc ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵𝐴 = 𝐵 ) )
2 leloe ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
3 1 2 syl5ibr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴𝐵 ) )