Metamath Proof Explorer
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof
shortened by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltlecasei.1 |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝜓 ) |
|
|
ltlecasei.2 |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝜓 ) |
|
|
ltlecasei.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltlecasei.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
Assertion |
ltlecasei |
⊢ ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltlecasei.1 |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝜓 ) |
2 |
|
ltlecasei.2 |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝜓 ) |
3 |
|
ltlecasei.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
ltlecasei.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
lelttric |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵 ) ) |
6 |
4 3 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵 ) ) |
7 |
2 1 6
|
mpjaodan |
⊢ ( 𝜑 → 𝜓 ) |