Metamath Proof Explorer


Theorem ltlecasei

Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltlecasei.1 ( ( 𝜑𝐴 < 𝐵 ) → 𝜓 )
ltlecasei.2 ( ( 𝜑𝐵𝐴 ) → 𝜓 )
ltlecasei.3 ( 𝜑𝐴 ∈ ℝ )
ltlecasei.4 ( 𝜑𝐵 ∈ ℝ )
Assertion ltlecasei ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 ltlecasei.1 ( ( 𝜑𝐴 < 𝐵 ) → 𝜓 )
2 ltlecasei.2 ( ( 𝜑𝐵𝐴 ) → 𝜓 )
3 ltlecasei.3 ( 𝜑𝐴 ∈ ℝ )
4 ltlecasei.4 ( 𝜑𝐵 ∈ ℝ )
5 lelttric ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴𝐴 < 𝐵 ) )
6 4 3 5 syl2anc ( 𝜑 → ( 𝐵𝐴𝐴 < 𝐵 ) )
7 2 1 6 mpjaodan ( 𝜑𝜓 )