Metamath Proof Explorer


Theorem ltled

Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltd.2 ( 𝜑𝐵 ∈ ℝ )
ltled.1 ( 𝜑𝐴 < 𝐵 )
Assertion ltled ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltled.1 ( 𝜑𝐴 < 𝐵 )
4 ltle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴𝐵 ) )
5 1 2 4 syl2anc ( 𝜑 → ( 𝐴 < 𝐵𝐴𝐵 ) )
6 3 5 mpd ( 𝜑𝐴𝐵 )