Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| lt.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | ltlei | ⊢ ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) |