Metamath Proof Explorer


Theorem ltleii

Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
ltlei.1 𝐴 < 𝐵
Assertion ltleii 𝐴𝐵

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 ltlei.1 𝐴 < 𝐵
4 1 2 ltlei ( 𝐴 < 𝐵𝐴𝐵 )
5 3 4 ax-mp 𝐴𝐵