Metamath Proof Explorer
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999)
|
|
Ref |
Expression |
|
Hypotheses |
lt.1 |
⊢ 𝐴 ∈ ℝ |
|
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
|
Assertion |
ltleni |
⊢ ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
ltlen |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) |