Metamath Proof Explorer
Description: 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
lt.1 |
⊢ 𝐴 ∈ ℝ |
|
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
|
|
lt.3 |
⊢ 𝐶 ∈ ℝ |
|
Assertion |
ltletri |
⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 < 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
lt.3 |
⊢ 𝐶 ∈ ℝ |
| 4 |
|
ltletr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 5 |
1 2 3 4
|
mp3an |
⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 < 𝐶 ) |