| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltltncvr.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ltltncvr.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 3 |  | ltltncvr.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑍 )  →  𝐾  ∈  𝐴 ) | 
						
							| 5 |  | simplr1 | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑍 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | simplr3 | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑍 )  →  𝑍  ∈  𝐵 ) | 
						
							| 7 |  | simplr2 | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑍 )  →  𝑌  ∈  𝐵 ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑍 )  →  𝑋 𝐶 𝑍 ) | 
						
							| 9 | 1 2 3 | cvrnbtwn | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋 𝐶 𝑍 )  →  ¬  ( 𝑋  <  𝑌  ∧  𝑌  <  𝑍 ) ) | 
						
							| 10 | 4 5 6 7 8 9 | syl131anc | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑍 )  →  ¬  ( 𝑋  <  𝑌  ∧  𝑌  <  𝑍 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋 𝐶 𝑍  →  ¬  ( 𝑋  <  𝑌  ∧  𝑌  <  𝑍 ) ) ) | 
						
							| 12 | 11 | con2d | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  <  𝑌  ∧  𝑌  <  𝑍 )  →  ¬  𝑋 𝐶 𝑍 ) ) |