Metamath Proof Explorer


Theorem ltmnq

Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of Gleason p. 120. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion ltmnq ( 𝐶Q → ( 𝐴 <Q 𝐵 ↔ ( 𝐶 ·Q 𝐴 ) <Q ( 𝐶 ·Q 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 mulnqf ·Q : ( Q × Q ) ⟶ Q
2 1 fdmi dom ·Q = ( Q × Q )
3 ltrelnq <Q ⊆ ( Q × Q )
4 0nnq ¬ ∅ ∈ Q
5 elpqn ( 𝐶Q𝐶 ∈ ( N × N ) )
6 5 3ad2ant3 ( ( 𝐴Q𝐵Q𝐶Q ) → 𝐶 ∈ ( N × N ) )
7 xp1st ( 𝐶 ∈ ( N × N ) → ( 1st𝐶 ) ∈ N )
8 6 7 syl ( ( 𝐴Q𝐵Q𝐶Q ) → ( 1st𝐶 ) ∈ N )
9 xp2nd ( 𝐶 ∈ ( N × N ) → ( 2nd𝐶 ) ∈ N )
10 6 9 syl ( ( 𝐴Q𝐵Q𝐶Q ) → ( 2nd𝐶 ) ∈ N )
11 mulclpi ( ( ( 1st𝐶 ) ∈ N ∧ ( 2nd𝐶 ) ∈ N ) → ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ∈ N )
12 8 10 11 syl2anc ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ∈ N )
13 ltmpi ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ∈ N → ( ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) <N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ↔ ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) ) <N ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ) ) )
14 12 13 syl ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) <N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ↔ ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) ) <N ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ) ) )
15 fvex ( 1st𝐶 ) ∈ V
16 fvex ( 2nd𝐶 ) ∈ V
17 fvex ( 1st𝐴 ) ∈ V
18 mulcompi ( 𝑥 ·N 𝑦 ) = ( 𝑦 ·N 𝑥 )
19 mulasspi ( ( 𝑥 ·N 𝑦 ) ·N 𝑧 ) = ( 𝑥 ·N ( 𝑦 ·N 𝑧 ) )
20 fvex ( 2nd𝐵 ) ∈ V
21 15 16 17 18 19 20 caov4 ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) ) = ( ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) )
22 fvex ( 1st𝐵 ) ∈ V
23 fvex ( 2nd𝐴 ) ∈ V
24 15 16 22 18 19 23 caov4 ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ) = ( ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) )
25 21 24 breq12i ( ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) ) <N ( ( ( 1st𝐶 ) ·N ( 2nd𝐶 ) ) ·N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ) ↔ ( ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ) <N ( ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ) )
26 14 25 bitrdi ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) <N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ↔ ( ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ) <N ( ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ) ) )
27 ordpipq ( ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ⟩ <pQ ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ⟩ ↔ ( ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ) <N ( ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) ·N ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ) )
28 26 27 bitr4di ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) <N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ↔ ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ⟩ <pQ ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ⟩ ) )
29 elpqn ( 𝐴Q𝐴 ∈ ( N × N ) )
30 29 3ad2ant1 ( ( 𝐴Q𝐵Q𝐶Q ) → 𝐴 ∈ ( N × N ) )
31 mulpipq2 ( ( 𝐶 ∈ ( N × N ) ∧ 𝐴 ∈ ( N × N ) ) → ( 𝐶 ·pQ 𝐴 ) = ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ⟩ )
32 6 30 31 syl2anc ( ( 𝐴Q𝐵Q𝐶Q ) → ( 𝐶 ·pQ 𝐴 ) = ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ⟩ )
33 elpqn ( 𝐵Q𝐵 ∈ ( N × N ) )
34 33 3ad2ant2 ( ( 𝐴Q𝐵Q𝐶Q ) → 𝐵 ∈ ( N × N ) )
35 mulpipq2 ( ( 𝐶 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐶 ·pQ 𝐵 ) = ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ⟩ )
36 6 34 35 syl2anc ( ( 𝐴Q𝐵Q𝐶Q ) → ( 𝐶 ·pQ 𝐵 ) = ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ⟩ )
37 32 36 breq12d ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( 𝐶 ·pQ 𝐴 ) <pQ ( 𝐶 ·pQ 𝐵 ) ↔ ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐴 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐴 ) ) ⟩ <pQ ⟨ ( ( 1st𝐶 ) ·N ( 1st𝐵 ) ) , ( ( 2nd𝐶 ) ·N ( 2nd𝐵 ) ) ⟩ ) )
38 28 37 bitr4d ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) <N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ↔ ( 𝐶 ·pQ 𝐴 ) <pQ ( 𝐶 ·pQ 𝐵 ) ) )
39 ordpinq ( ( 𝐴Q𝐵Q ) → ( 𝐴 <Q 𝐵 ↔ ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) <N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ) )
40 39 3adant3 ( ( 𝐴Q𝐵Q𝐶Q ) → ( 𝐴 <Q 𝐵 ↔ ( ( 1st𝐴 ) ·N ( 2nd𝐵 ) ) <N ( ( 1st𝐵 ) ·N ( 2nd𝐴 ) ) ) )
41 mulpqnq ( ( 𝐶Q𝐴Q ) → ( 𝐶 ·Q 𝐴 ) = ( [Q] ‘ ( 𝐶 ·pQ 𝐴 ) ) )
42 41 ancoms ( ( 𝐴Q𝐶Q ) → ( 𝐶 ·Q 𝐴 ) = ( [Q] ‘ ( 𝐶 ·pQ 𝐴 ) ) )
43 42 3adant2 ( ( 𝐴Q𝐵Q𝐶Q ) → ( 𝐶 ·Q 𝐴 ) = ( [Q] ‘ ( 𝐶 ·pQ 𝐴 ) ) )
44 mulpqnq ( ( 𝐶Q𝐵Q ) → ( 𝐶 ·Q 𝐵 ) = ( [Q] ‘ ( 𝐶 ·pQ 𝐵 ) ) )
45 44 ancoms ( ( 𝐵Q𝐶Q ) → ( 𝐶 ·Q 𝐵 ) = ( [Q] ‘ ( 𝐶 ·pQ 𝐵 ) ) )
46 45 3adant1 ( ( 𝐴Q𝐵Q𝐶Q ) → ( 𝐶 ·Q 𝐵 ) = ( [Q] ‘ ( 𝐶 ·pQ 𝐵 ) ) )
47 43 46 breq12d ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( 𝐶 ·Q 𝐴 ) <Q ( 𝐶 ·Q 𝐵 ) ↔ ( [Q] ‘ ( 𝐶 ·pQ 𝐴 ) ) <Q ( [Q] ‘ ( 𝐶 ·pQ 𝐵 ) ) ) )
48 lterpq ( ( 𝐶 ·pQ 𝐴 ) <pQ ( 𝐶 ·pQ 𝐵 ) ↔ ( [Q] ‘ ( 𝐶 ·pQ 𝐴 ) ) <Q ( [Q] ‘ ( 𝐶 ·pQ 𝐵 ) ) )
49 47 48 bitr4di ( ( 𝐴Q𝐵Q𝐶Q ) → ( ( 𝐶 ·Q 𝐴 ) <Q ( 𝐶 ·Q 𝐵 ) ↔ ( 𝐶 ·pQ 𝐴 ) <pQ ( 𝐶 ·pQ 𝐵 ) ) )
50 38 40 49 3bitr4d ( ( 𝐴Q𝐵Q𝐶Q ) → ( 𝐴 <Q 𝐵 ↔ ( 𝐶 ·Q 𝐴 ) <Q ( 𝐶 ·Q 𝐵 ) ) )
51 2 3 4 50 ndmovord ( 𝐶Q → ( 𝐴 <Q 𝐵 ↔ ( 𝐶 ·Q 𝐴 ) <Q ( 𝐶 ·Q 𝐵 ) ) )