Metamath Proof Explorer
		
		
		
		Description:  The ratio of nonnegative and positive numbers is nonnegative.
         (Contributed by Mario Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ltmul1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | ltmul1d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | ltmul1d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
					
						|  |  | ltdiv1dd.4 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
				
					|  | Assertion | ltmul1dd | ⊢  ( 𝜑  →  ( 𝐴  ·  𝐶 )  <  ( 𝐵  ·  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltmul1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ltmul1d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ltmul1d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 4 |  | ltdiv1dd.4 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 5 | 1 2 3 | ltmul1d | ⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  ·  𝐶 )  <  ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 6 | 4 5 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐶 )  <  ( 𝐵  ·  𝐶 ) ) |