Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
ltmul2d
Metamath Proof Explorer
Description: Multiplication of both sides of 'less than' by a positive number.
Theorem I.19 of Apostol p. 20. (Contributed by Mario Carneiro , 28-May-2016)
Ref
Expression
Hypotheses
ltmul1d.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
ltmul1d.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
ltmul1d.3
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ )
Assertion
ltmul2d
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) )
Proof
Step
Hyp
Ref
Expression
1
ltmul1d.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
2
ltmul1d.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
3
ltmul1d.3
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ )
4
3
rpregt0d
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
5
ltmul2
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) )
6
1 2 4 5
syl3anc
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) )