Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
ltmul2dd
Metamath Proof Explorer
Description: Multiplication of both sides of 'less than' by a positive number.
Theorem I.19 of Apostol p. 20. (Contributed by Mario Carneiro , 30-May-2016)
Ref
Expression
Hypotheses
ltmul1d.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
ltmul1d.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
ltmul1d.3
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ )
ltdiv1dd.4
⊢ ( 𝜑 → 𝐴 < 𝐵 )
Assertion
ltmul2dd
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
ltmul1d.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
2
ltmul1d.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
3
ltmul1d.3
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ )
4
ltdiv1dd.4
⊢ ( 𝜑 → 𝐴 < 𝐵 )
5
1 2 3
ltmul2d
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) ) )
6
4 5
mpbid
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) < ( 𝐶 · 𝐵 ) )