Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
prodgt0.2 | ⊢ 𝐵 ∈ ℝ | ||
ltmul1.3 | ⊢ 𝐶 ∈ ℝ | ||
Assertion | ltmuldivi | ⊢ ( 0 < 𝐶 → ( ( 𝐴 · 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐵 / 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
2 | prodgt0.2 | ⊢ 𝐵 ∈ ℝ | |
3 | ltmul1.3 | ⊢ 𝐶 ∈ ℝ | |
4 | ltmuldiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐵 / 𝐶 ) ) ) | |
5 | 1 2 4 | mp3an12 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( ( 𝐴 · 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐵 / 𝐶 ) ) ) |
6 | 3 5 | mpan | ⊢ ( 0 < 𝐶 → ( ( 𝐴 · 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐵 / 𝐶 ) ) ) |