Metamath Proof Explorer


Theorem ltmuldivi

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999)

Ref Expression
Hypotheses ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion ltmuldivi ( 0 < 𝐶 → ( ( 𝐴 · 𝐶 ) < 𝐵𝐴 < ( 𝐵 / 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1 𝐴 ∈ ℝ
2 prodgt0.2 𝐵 ∈ ℝ
3 ltmul1.3 𝐶 ∈ ℝ
4 ltmuldiv ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) < 𝐵𝐴 < ( 𝐵 / 𝐶 ) ) )
5 1 2 4 mp3an12 ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( ( 𝐴 · 𝐶 ) < 𝐵𝐴 < ( 𝐵 / 𝐶 ) ) )
6 3 5 mpan ( 0 < 𝐶 → ( ( 𝐴 · 𝐶 ) < 𝐵𝐴 < ( 𝐵 / 𝐶 ) ) )