Metamath Proof Explorer


Theorem ltmulgt11

Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005)

Ref Expression
Assertion ltmulgt11 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵𝐴 < ( 𝐴 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 ltmul2 ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) )
3 1 2 mp3an1 ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) )
4 3 3impb ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) )
5 4 3com12 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) )
6 ax-1rid ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 )
7 6 3ad2ant1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 1 ) = 𝐴 )
8 7 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) )
9 5 8 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵𝐴 < ( 𝐴 · 𝐵 ) ) )