Metamath Proof Explorer
Description: Multiplication by a number greater than 1. (Contributed by Mario
Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpgecld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
rpgecld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
|
Assertion |
ltmulgt11d |
⊢ ( 𝜑 → ( 1 < 𝐴 ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpgecld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
rpgecld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 3 |
2
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
2
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 5 |
|
ltmulgt11 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 < 𝐴 ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |
| 6 |
3 1 4 5
|
syl3anc |
⊢ ( 𝜑 → ( 1 < 𝐴 ↔ 𝐵 < ( 𝐵 · 𝐴 ) ) ) |